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The human visual system is proficient in perceiving three-dimensional 
shape from the shading patterns in a two-dimensional image. How it 
does this is not well understood and continues to be a question of fun- 
damental and practical interest. In this paper we present a new quanti- 
tative approach to shape-from-shading that may provide some answers. 
We suggest that the brain, through evolution or prior experience, has 
discovered that objects can be classified into lower-dimensional object- 
classes as to their shape. Extraction of shape from shading is then 
equivalent to the much simpler problem of parameter estimation in a 
low-dimensional space. We carry out this proposal for an important 
class of three-dimensional (3D) objects: human heads. From an en- 
semble of several hundred laser-scanned 3D heads, we use principal 
component analysis to derive a low-dimensional parameterization of 
head shape space. An algorithm for solving shape-from-shading using 
this representation is presented. It works well even on real images 
where it is able to recover the 3D surface for a given person, maintain- 
ing facial detail and identity, from a single 2D image of his face. This 
algorithm has applications in face recognition and animation. 

1 Introduction 

Our brain is remarkable in its ability to perceive a three-dimensional 
world from the two-dimensional images projected on the retina (Ra- 
machandran 1988; Todd and Mingolla 1983; Mingolla and Todd 1986; 
Gulick and Lawson 1976). How it achieves this task is poorly under- 
stood and continues to be an active topic within the neuroscience and 
machine vision communities. What is well understood are the cues it 
uses to extract a three-dimensional (3D) interpretation. 

Many of these cues have been exploited by artists over the years to 
add realism to their work. For example, shading patterns, first used in 
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the fourteenth century by Renaissance painters, create a vivid impres- 
sion of 3D shape in two-dimensional (2D) paintings. While there are 
other important cues that contribute to our perception of 3D space- 
such as binocular disparity and motion parallax-in this paper we are 
interested in the problem of recovering 3D shape from a single 2D image 
using shading information only: the so-called shape-from-shading prob- 
lem (for an excellent explication of this problem, see Horn and Brooks 
1989). Shading is the variation in brightness from one point to another 
in an image. It carries information about shape because the amount of 
light a surface patch reflects depends on its orientation (surface normal) 
relative to the incident light. So, in the absence of variability in surface 
reflectance properties (surface material), the variability in brightness can 
be due only to changes in local surface orientation and hence conveys 
strong information about shape. 

At the outset we should emphasize that shape-from-shading is fun- 
damentally a very difficult mathematical problem. The brightness at a 
given point fixes only the projection of the surface normal onto the in- 
cident light vector (see next section), and hence one cannot associate a 
unique normal to each point. In fact, if normals are assigned indepen- 
dently at each point, then there is an infinite number of normal vector 
fields that are consistent with the image brightness data, so the problem 
appears to be ill-posed. Of course, normals cannot be independent since 
the vector field of a true smooth surface satisfies constraints such as inte- 
grability (Guggenheimer 1977). These constraints imply that normals are 
strongly coupled across the surface and cannot be determined by purely 
local or point by point analysis. It is this coupling that is at the heart of 
the complexity of this problem. To make things worse, in typical situ- 
ations the light source and reflectance properties of the surface are not 
known and have to be estimated simultaneously with shape. 

Most algorithms proposed thus far in the literature attempt to make 
shape-from-shading well-posed by imposing some smoothness 
constraints that cut the infinite number of solutions consistent with the 
image data down to the few that satisfy the constraints. This approach, 
while theoretically promising, in practice suffers from a number of prob- 
lems. These include sensitivity to smoothness parameters, multiple false 
solutions, nonrobustness against noise, and generally poor reconstruction 
for real world images. 

We should note that most previous shape-from-shading algorithms 
are intended to be applicable to images of smooth but still otherwise 
arbitrary objects. Technically speaking, this means that one attempts to 
estimate shape in a space with an excessively large number of degrees 
of freedom' from the limited information contained in the image. The 

'For a typical image size, the depth function z(x. y) of the surface represents nearly 
one hundred thousand degrees of freedom. The generic constraints of smoothness 
are not likely to lower the dimensionality enough if one still insists on being able to 
represent arbitrary shapes. 
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difficulties common to such algorithms directly stem from working in 
this higher dimensional space. 

While generality may be a noble aim from a mathematical point of 
view, it is neither clear that it is practically achievable nor is it obvious 
that the brain solves its shape-from-shading problems in such a way. It 
is well known that expectation and prior knowledge of the world can 
influence our interpretation of sensory data (Gregory 1970; Ramachan- 
dran 1990; Anstis 1991). What if it were true that the brain, through 
evolution or interaction with its environment, has discovered that ob- 
jects can be classified into object-classes as to their shape? Shape space 
within each class may then be easy to parameterize and may even be 
very low-dimensional. If this is true, then shape-from-shading becomes 
equivalent to estimating a small number of parameters given an image 
and knowledge of what class the object belongs to--certainly a more 
tractable problem. 

One way to explore this idea is to start with an ensemble of shapes 
of related 3D objects, use standard statistical techniques such as principal 
component analysis (Karhunen 1946; Loeve 1955; Joliffe 1986), and derive 
a dimensionally reduced representation for shapes in this class. From a 
database of several hundred laser-scanned heads’ we carry this out for 
the class of 3D human heads. We show that principal components pro- 
vide an excellent low-dimensional parameterization of head shape that 
maintains facial detail and identity of the person. We use this represen- 
tation to solve the shape-from-shading problem for any human head; we 
are able to recover an accurate 3D surface of the head/face of any person 
from a single 2D image of his face. 

The organization of this paper is as follows: in Section 2 we define 
mathematically the problem of shape-from-shading. In Section 3 we de- 
rive a statistical parameterization of head-space that we use in Section 4 
to solve shape-from-shading and apply it to real images of faces. Some 
details about the database used to extract the statistical regularities of 
human heads are given in Appendix A. In Appendix B we describe an 
algorithm for determining the light source from the image. Technical de- 
tails related to the derivation of principal components of human heads 
are relegated to Appendix C. 

For other approaches to shape-from-shading see Horn and Brooks 
(1989, and references therein), Horn (1970), Ikeuchi and Horn (1981), 
Brooks (1982), Pentland (1984, 1990), Lee and Rosenfeld (1989), Zheng 
and Chellapa (1991); Oliensis (1991), and Lehky and Sejnowski (1988). 
For other approaches to the construction of low-dimensional parameter- 
izations of shape space see Cutzu and Edelman (1995), Edelman (1995), 
and more specifically for face shape see Vetter and Poggio (1995, and 
references therein). 

*This database was made available to us by the Human Engineering Division of 
the Wright-Patterson Air Force Base; see Appendix A for further information about the 
database. 
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2 The Shape-from-Shading Problem 

Mathematically speaking, shape-from-shading is equivalent to an inverse 
rendering problem. As such we will formulate it within a given rendering 
model-the so-called Lambertian model of surface reflectance. We should 
keep in mind that the algorithm presented in Section 4 holds for any 
other rendering model. With the assumption of orthographic projection 
and Lambertian surfaces, the rendering equation for a single light source 
is given by3 

where L = ( L , .  Ll,. L,) is a vector representing the incident light and 
n'(s.y) is the normal to the surface. //(I.!/) is called the albedo, and 
it represents the deviation in reflectance properties due to pigmentation 
or markings on the surface. Finally, R( L. n5) = L . n5 is known as the re- 
flectance map. Strictly speaking this model of image formation includes 
a hard nonlinearity that sets I to zero at points where the reflectivity is 
negative; those are the points of self-shadowing. In the rest of this paper 
we will continue to suppress this nonlinearity from our displayed equa- 
tions, but the reader should keep in mind that i t  is implicitly taken into 
account . 

We will describe surfaces parametrically. For example, human heads 
can be described by the function r (H.  I )  in cylindrical coordinates, where 
r is the radius and I and H are the height and angular coordinates, respec- 
tively. The Euclidean (s. y. 2 j coordinates of each point on the surface are 
related to these through 

V(0.I )  f [ s ( H . I ) . ! / ( H . l j . z ( H . l ) ]  

= i.xo t r (hr . i ) s in t i . y , l ;~ .=, ,+r(H.I )cosH]  (2.2) 

for some shift st). yo. 20 relating the position of the origin in the two coor- 
dinate systems. The local tangent plane to the surface is spanned by the 
vectors i)V/i)H and iIV/iX. Thus the direction of the normal ns is given 
by the vector cross-product of these vectors: 

dV dV 
n'iH.Ij x - x - 

dH dl 
It is not difficult to show that the unit normal is 

(2.3) 

niiH.ij = 
I 

\:'r2 + ( 2 12 + Y2(  $ j2 

dr  Or Or . 
x (-- dd cosH+rsinH. - r -  dl . -sinH+rcosi)) ai) (2.4) 

'The coordinates .r. y are the 2D projections of the Euclidean 3D coordinates (m. I/. z) 
in which the surface, ~ [ x .  !/I, is embedded; the z axis is along the optical axis. 
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The procedure for rendering is to first compute I (6 .  l )  using equations 2.4 
and 2.1; then use the coordinate transform 2.2 to recover I(x, y). In gen- 
eral this will evaluate I(x,y) at nonuniform values of x.y; we recover 
the image on a uniform coordinate grid through standard interpolation 
techniques (see Wolberg 1992). 

Given the image I(x. y) the problem is to find the surface S, the albedo 
T j ,  and the light L that satisfy equation 2.1. In general, these three are un- 
known and have to be determined simultaneously. In practice, however, 
one may be able to estimate each of the three quantities separately. For 
example, one could assume initially the albedo is constant, estimate the 
light direction, and then use that estimate to find the surface. One may 
even use iterative schemes that alternate between estimating the light 
direction and the surface shape (Brooks and Horn 1985). 

Estimating light source direction turns out not to be a major problem. 
There are now many successful algorithms for doing so (Pentland 1982; 
Brooks and Horn 1985; Lee and Rosenfeld 1989; Zheng and Chellappa 
1991). In Appendix B we present our algorithm, which is able to deter- 
mine light direction with an accuracy of better than 5 degrees for images 
of faces under nonextreme illumination directions. Henceforth, we will 
not consider this problem and will assume that the light direction has 
been determined. We will also set the albedo to a constant, and we will 
return to it in a future publication. Actually, as we will see in Section 4, 
ignoring albedo turns out to be a very good first approximation for faces. 

Equation 2.1 can be viewed as a nonlinear partial differential equation 
for the surface function r(6.  l). Unfortunately, thinking of it this way is 
not very useful for real images: Standard methods of numerical integra- 
tion of differential equations (e.g., characteristic strip method) in practice 
fail miserably. These methods are inherently too sensitive to noise and 
they require knowledge of boundary conditions. 

An alternative formulation is to think of shape-from-shading as an 
optimization problem where one attempts to minimize the average error 

2 
E = dxdy I(x. y) - R(L. nS)] S [  

with respect to the surface shape. As stated in the introduction, without 
imposing constraints, this problem is ill-defined: there is an infinite num- 
ber of solutions. The constraints are typically chosen to ensure smooth- 
ness of the recovered surface and to allow one solution to be favored. 
There is an entire mathematical discipline known as regularization theory 
that attempts to do this (Tikhonov and Arsenin 1977). The problem is 
that again in practice, standard regularization does not work satisfactorily 
with shape-from-shading. Among its problems are sensitivity to choice 
of constraints and a proliferation of local minima. To avoid these prob- 
lems, we give up generality and focus on solving shape-from-shading 
within one object class at a time where knowledge of properties of the 
class can be used to severely limit the shape degrees of freedom. In this 
paper we implement this approach for the class of human heads. 
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3 Low-Dimensional Representation of Human Head Shape 

Human head shape is amazingly consistent across billions of people. The 
gross structure is invariably the same; all people have protrusions we call 
noses, depressions we call eye sockets, and flatter regions for foreheads 
and cheeks. Anthropometric surveys (Hursh 1976) have examined the 
extent of this similarity and have quantitatively confirmed that the vari- 
ability from one head to another is, in fact, relatively small. Nevertheless, 
it is these small deviations (on average on the order of a centimeter) that 
give a face its unique identity. Actually, face shapes are much like im- 
prints on coins, they are generated through small deviations from the 
large scale structure. 

This suggests a hierarchical representation for human head shape: 
In cylindrical coordinates we can describe any given face r ( Q . 0  as a 
perturbation about a function common to all faces, ro(H. /)-the so-called 
"mean-head": 

r ( H .  = ro(H. / )  + p ( H .  I i (3.1) 
where p ( H .  l ]  are small fluctuations p / r o  < 1 that capture the identity of 
the person. 

In this paper we take ro(H.  I )  to be the average of the first 200 heads 
from the USAF database (see Appendix A), ie . ,  

1 w 
r,l = - Er'(O.~) (3.2) 

t=l 

In general, however, one may use several ros corresponding to the aver- 
ages of a few clusters. For example, adult males may be described by one 
cluster while females by another. Furthermore, we should keep in mind 
that we are free to perform global 3D transformations such as scaling on 
a given head if necessary to maintain the validity of the expansion 3.1 
even for unusually small or large heads. 

To represent p( H .  l )  we use principal component analysis (Karhunen 
1946; Lo6ve 1955; Joliffe 1986) and expand the fluctuations in terms of 
the set of eigenfunctions a1: 

(3.3) 

The eigenfunctions @! are derived from the first 200 heads in the USAF 
database using the procedure described in Appendix C. They represent 
an empirically derived basis set that captures the statistical regularities 
in the database and creates a low-dimensional representation of the data. 
Among their desirable properties is the fact that the mean square error 
introduced by truncating the summation in 3.3 is minimal. 

In Figure 1 we show the mean-head and the first 15 eigenrnodes ren- 
dered after adding each mode to ro(H. I ) .  These pictures are very reveal- 
ing; many modes seem to predominantly represent features that we can 

Y ( H . / i  = r o ( 0 . I )  + = p 1 @ # ( H . q  
I 
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identify as face components. The claim is that by taking appropriate lin- 
ear combinations of these modes and adding them to the mean yo, we can 
generate with good accuracy the shape of any human head. In fact it is 
this generalization ability of these modes that is crucial to this approach. 
We have tested this using the remaining 147 surfaces in the database 
(the ones not used to compute the mean or the modes). Since the eigen- 
modes are orthogonal, given a surface r'(0, t )  for some t, its eigenmode 
expansion coefficients are simply 

(3.4) 

where A, are the eigenvalues. From these coefficients the eigenmode rep- 
resentation of this surface is given by equation 3.3. We have computed 
the error lyactual - pigenmode I/Pctua' for the 147 out-of-sample heads as a 
function of the number of modes used in the representation. The aver- 
age over the 147 surfaces and over all points is shown in Figure 2, where 
we find that the error drops to about 1% by the time we use 40 modes4 
However, this should be taken only as a rough indication of the quality 
of the representation since the error measure does not capture the de- 
pendence of the error on spatial position and also it has no perceptual 
meaning. Although, we can say that when the error is less than 1%, the 
reconstructed surface and the original are perceptually almost identical. 
This should be compared with the error when no modes are used, i.e., 
the distance to the mean-head, which ranges from 10 to 27%; ten percent 
error is perceptually very significant. 

We should point out that principal components were used in Sirovich 
and Kirby (1987) and Kirby and Sirovich (1990) to derive a representa- 
tion of images of human faces. There, it was shown that eigenmodes 
(so called eigenfaces) provided an excellent low-dimensional characteri- 
zation of face images. In this paper we rely on the same principle that 
makes eigenfaces successful, namely, the fact that human faces whether 
imaged or as surfaces have few degrees of freedom and thus can be rep- 
resented with a relatively small number of parameters. Here, of course, 
we compute eigenmodes for surfaces and not images, so these functions 
have a different interpretation and utility from those obtained by Sirovich 
and Kirby. In analogy with eigenfaces one may use the term eigenheads 
to refer to these modes. 

4Notice what we have examined here is the out-of-sample generalization error, which 
is to be contrasted with the in-sample truncation error. The dependence of the latter 
on the number of modes is known theoretically (rms error is given by the sum of the 
eigenvalues of the modes that are dropped) and is not of interest in this context. The 
fact that the out-of-sample error turns out to be very small is a strong indication that 
the representation has captured the true characteristics of head shape to the point that 
it can represent any head. 
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Figure 1: The mean-head surface, 1’0 ( lyp t ’?’  kft-rrrosf c - o r w )  and the 15 most 
significant eigenheads Q,. To display them, the modes Q, have been added to 
r,) and then rendered straight-on (see Appendix A for details about database 
used t o  extract these modes). 

4 Solving Shape-from-Shading ~_ 

With the space of head shapes parameterized, any individual‘s head is 
given by specifying the coefficients o, . t  = 1. .N.  For N - 200, the 
number of degrees of freedom in this space is much smaller than those 
available in a general r ( 0  I )  [at the resolution we are using r ( f l . { )  has 
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Figure 2: The dependence of the reconstruction error on the number of modes 

averaged over all points on the surface and over 147 out-of-sample heads (those 
not used to construct the eigenmodes) and is displayed as a percentage. 

used in the representation. The error is defined as /ractua' - Pigenmode I /ractua' 

256 x 200 = 51,200 real degrees of freedom representing visible surface]. 
In this section we consider only the problem of determining the surface; 
we assume that the algorithm in Appendix B was used to determine 
the source. We will also set the albedo 71 = 1; we will return to the 
problem of albedo in a future publication. Thus the only unknowns in 
the shape-from-shading problem are the eigenhead coefficients a,. 

To determine a, we can try to minimize the error function 

with respect to the coefficients a,, where 

r(0. e )  = ro(0. P) + Ca,Q,(H. Y )  
200 

1=1 

and R(L.a) is the reflectance map computed using 2.4 and 4.2. I ( x 0  + 
r sin 0, Y )  is the image I ( x ,  y) sampled in cylindrical coordinates using the 
radius function r .  Notice in this formulation as we vary u, looking for a 
minimum both R(L. a) and I(xO + rsin 8, t) vary. This has the undesirable 
effect that very often the algorithm can find a trivial solution that will 
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minimize 4.1, for example, r - 0 or x. To avoid this problem, we 
take advantage of the perturbative nature of human heads in cylindrical 
coordinates and series expand the image I as follows: 

l(x,,+rsinH.i) = Z(so+r"sinH.t)+i),Z(s"+rosin8.() 

x [ p @ ; ( H . O ]  + (4.3) 

Generally, we find the first-order term is sufficient, but slightly bet- 
ter results can be achieved by keeping terms quadratic in fluctuation. 
This formulation is also computationally efficient since one computes 
I( so + I',) sin H .  f )  and &I( x,) + r,) sin H. ( )  from I( x. y) once and for all before 
attempting to determine the coefficients n,. We compute these from I ( s .  y) 
and & I (  x. y )  through linear interpolation. 

We have used two minimization techniques to determine a,: conjugate 
gradient and gradient descent (Press ct al. 1992), and they both converge 
to the same solution. The algorithm was tested on about a dozen images 
generated by Lambertian rendering of surfaces from the out-of-sample 
portion of the USAF database. We have also tested it on real images 
taken from a video camera. In Figure 3 three typical results for the purely 
Lambertian images are shown. In the first column we show the images 
I ( s .  y )  used as input to the algorithm; in the second column we show the 
rendering of the reconstructed surface after the minimization algorithm 
converged. The third and fourth columns give a comparison between the 
image of the original surface and the image of the reconstructed surface 
at 90'. 

One can verify again and again that the algorithm is capable of re- 
producing the original face shape for synthetic Lambertian images.' Of 
course, there is limited interest in such images beyond academic consid- 
erations, and the true test of this shape-from-shading algorithm is how 
well it works for real images, images taken by a camera. In Figure 4 we 
show one such test. The face in the center is a TIFF image taken by a 
video camera and cropped. The algorithm in Appendix B was used to de- 
termine the light direction and its strength (the light direction was found 
to a very good approximation to be straight-on with overall strength 
124). For this image the shape-from-shading algorithm converged in 24 
iterations of the conjugate gradient minimization. The surface that it 
extracts from the image is shown from four different points of view in 
Figure 4. Since the 3D laser scan of this person is not available we leave 
it to the reader to decide on the quality of the reconstruction. However 
we should point out that we found this reconstruction is excellent for 
designing total contact burn masks from a photograph,6 an application 
this algorithm is currently being developed for. 

'Although we have not done systematic quantification of the error in recovery, from 

'These are facial masks that are \\porn by burn victims during an extended rehabili- 
the dozen examples that we considered the average error is on the order of 2"/% 

tation period. 
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Figure 3: Three comparisons between surfaces extracted by the shape-from- 
shading algorithm with the true surfaces. The first column from the left are the 
2D images used as input to the algorithm. The second column are the recovered 
surfaces rendered with a straight-on light. The third and fourth columns give 
the same comparison but viewed after rotation by 90”. 

5 Comments and Relevance to the Brain 

There are other practical applications to being able to construct a 3D 
model of a given face from a 2D image. For example, in face recognition, 
it is often necessary to change the pose of a person in an image to bring 
it to a canonical frontal pose just as it is necessary to compensate for the 
size of the head by scaling it to a canonical size (Atick et al. 1995). In 
Figure 5 we use the 3D model extracted by shape-from-shading in the 
previous section to generate the different poses from a single image. Of 
course there are other ways to synthesize different views from a single 
image. Among these, for example, is the technique of Vetter and Poggio 
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-- 

Figure 4: An example of a surface reconstructed from a real 2D image (center). 
Four views of the reconstructed surface are shown surrounding the original 2D 
image 

(1995) that exploits image transformations that are specific to the object 
class and learnable from example views of other objects of the same class. 
This technique, however, requires the derivation of 2D flow fields that 
map a person’s image into a reference image, which, in general, is very 
difficult. For other techniques that achieve this see Beymer and Poggio 
(1995) and Lando and Edelman (1995). 

We must emphasize that the current algorithm was not optimized 
for speed or output quality. It is preliminary in the sense that many 
of its engineering details can be better implemented. Also, within this 
approach, how well the algorithm works depends on the quality of the 
eigenhead surfaces, which in turn is a function of the database used. 
One can go back and rederive the eigenheads from larger and less noisy 
ensembles of heads (currently there are databases with 50,000 human 
heads available). Another problem of interest at a more fundamental 
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Figure 5: With knowledge of the 3D model of a face and a single image (same 
as the one in center of Fig. 6) we can generate through texture mapping what 
this person will look like in any 3D pose. 

level is that of determining albedo. We intend to come back to this issue 
in a later publication. 

Finally, one should explore whether the work presented here has any 
implications to the way the brain solves its shape perception problems. 
One may be tempted to argue that algorithms of shape-from-shading 
may not have any relevance to the brain since it is unlikely that the goal 
of vision is to reconstruct the outside world. This is a somewhat naive in- 
terpretation of what shape-from-shading algorithms are supposed to do. 
Shape is an intrinsic property of objects independent of the viewing and 
imaging conditions, and the brain could use some shape-from-shading 
algorithm to extract an invariant representation of objects, one that does 
not change as, say, the light changes. The eigenheads are precisely that; 
they provide an invariant representation whose elements are computable 
from image data. The output of the elements can then be used in cog- 
nitive tasks such as recognition and discrimination. In fact, preliminary 
work in our laboratory shows that shape information, even rudimentary, 
provides an additional strong signal over and above the albedo signal 
that improves discriminability in face recognition tasks. 

The eigenheads have advantanges, in addition to their computabil- 
ity. For example, being low dimensional they yield better generalization. 
They also have certain testable implications. For example, since they are 
specific to the class of heads, one should expect semantic categorization 
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to affect the perception of shape-from-shading. There is evidence that this 
is indeed the case in the brain (Churchland et al. 1994). In the famous 
experiments of Helmholtz and in the more recent ones by Ramachan- 
dran, human masks viewed from the inside (concave view) invariably 
appeared convex with the nose protruding toward the ob~erve r .~  The 
effect disappears when the masks are presented upside down as one 
would expect if the brain's shape perception mechanism probed by the 
experiment is specific to the category of heads (upside down heads are 
not normally encountered and are not expected to belong to the same 
category as heads). 

The eigenheads can be used as a tool for probing the neural response 
even if one does not accept them as the elements of head representation 
in the brain. For example, in the temporal lobe it is well-known that neu- 
rons exhibit strong object specificity and the so called face-cells respond 
selectively to human faces and heads. What is not clear yet is what prop- 
erties of faces these neurons are partial to. One can use the eigenheads 
'1s stimuli to systematically measure the response of face cells. One can 
even apply albedo maps to the shapes generated or render them under 
different lighting to determine the relative effect of 3D shape, color, and 
lighting on the neural response. 

Appendix A: The Database 

To derive the eigenheads we used a database of laser-scanned human 
heads. The database was made available to us by the Human Engineering 
Division of the Wright-Patterson USAF base and it is known as the "mini- 
survey." It contains 347 scanned heads of adult males. Each surface in 
the database is given as r(H. ( )  with 512 units of resolution for H and 256 
units of resolution for I .  The data were generated using a CyberWare 
Laser scanner. 

The data provided are unprocessed, which means they contain sig- 
nificant noise and gaps in the surfaces. We performed some simple pre- 
processing to fill in the gaps and to smooth some of the noise. We also 
cropped the data down to 256 x 200 (angular x height) around the nose 
since we are interested in the reconstruction of only the facial portion 
of heads. The back of the head was not used in the analysis presented 
in this paper. Finally, we have aligned the data using some 3D rigid 
transformations. 

It is important to emphasize that we have split the database into two 
parts: the first, containing 200 surfaces, was used to compute the mean 

'Another experiment that could reveal the specificity of the brain's shape perception 
mechanisms is a variant of the experiments pioneered by Koenderink et al. (1992). In 
these experiments subjects view images of rendered surfaces and adjust a gauge to 
reflect the perceived local surtace normal at many different points on the surface. It 
would be interesting to see if human performance is quantitatively different when the 
surfaces are actually 3D human heads. 
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uo and the eigenmodes Q;. The second, containing the remaining 147 
surfaces, was used for out-of-sample testing (see Section 3). 

Appendix B: Determining the Source 

In this appendix we present an algorithm for determining the light source, 
L, from an image of the face I(x, y). The algorithm is very simple; it uses 
the mean head surface to model how light and shadow vary over a face as 
a function of incident light direction L and determines L by minimizing 
the error function: 

E = dOdL{I[xo + ro(8. l )  sin 8.01 - L . no}2 (B.1) .I 
where no is the normal vector to the mean surface ro(O, P )  calculated from 
equation 2.4. The image I[xo + ro(O,P) sin H , B ]  is simply the input image 
I ( x ,  y) mapped to cylindrical coordinates using the mean surface YO. We 
use linear interpolation to evaluate the image at nonintegral positions. 

Since the energy is quadratic in L, the minimum can be evaluated 
explicitly; S E / S L ,  = 0 leads to 

3 

L, = C(I#)((n;n,O))-' 03.3) 
r=l 

with brackets indicating integration over (0, !?). To avoid the rectifica- 
tion nonlinearity in the rendering equations (see discussion below equa- 
tion 2.1) this integration is restricted to points where I is greater than 
zero. 

We can test how well this works by rendering out-of-sample faces 
at different lights, using them as input to the algorithm, and estimating 
Lest by solving the above 3 x 3 linear equation. Figure 6 shows a typical 
graph of the estimation error, defined as the angle between the estimated 
vector Le5' and the true vector used to generate the image L, i.e., 

The figure is a plot of A@ as a function of the standard illumination 
angles (Y and y. These angles are related to the light direction by 

__ = sinycosa L, 
IlLll 

= sinysincr 
IlLll 
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E s t i n a t  ion 

90 

" 
n a m a  

Figure 6: The angular error in estimating light source, A@, using the algorithm 
o f  Appendix B, as a function of the incident light direction angles, o and 7 , .  For 
1 1  and -, < 75' A@ is actually less than 5'. 

We find, in the regime I ( t 1  < 75', I-. 1 < 75', A@ < 5' with the typical value 
for A@ less than 2 . The estimation error goes up to 20" for the extreme 
lighting conditions of / I  := 90- and :, = 90'. This is not surprising con- 
sidering that under this lighting \.cry little of the image is visible. Thus, 
for all lighting conditions of interest, this algorithm works exceedingly 
well. 

The reason the algorithm works x'ery well is that incident light is the 
same for all points on the face and thus can be determined from the 
large scale shading patterns. Large scale shading for the most part is 
independent of the identity of the person, and its dependence on the 
light direction is well captured by the renderings of the mean head, r g .  
The algorithm is also robust to noise since L is estimated from moments 
iln,) and ( n ) f i , )  that are averaged over a very large number of points. 
(This number varies since the average is carried out only over the points 
where I is nonvanishing but for nonextreme lighting conditions it is on 
the order of 40-50 thousand points.) 

Other algorithms for estimating light source in the literature include 
Pentland (1982), Brooks and Horn (1985), Lee and Rosenfeld (1989), and 
Zheng and Chellappa (1991). 
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Appendix C: Principal Components of Human Heads 

In this appendix we give some mathematical details relevant to the com- 
putation of the principal components of human heads. For an excellent 
exposition on principal components as applied to the analysis of large 
datasets see Sirovich and Everson (1992). 

To start let rt(c) = [r’(Q. C) - ro(r3. e)] denote the surface deviation of the 
tth head surface in the database from the mean, t = 1.. . . , N. The princi- 
pal components or the eigenmodes are derived by solving the following 
set of linear equations: 

/dc’R(c. C’)P,(C’) = AlP1(C) F.1) 

where 
l N  

X(C. c’) = - C rt(c)rf(c’) 
t= l  

is the covariance matrix and A, is the ith eigenvalue. Since c = (0. e )  
ranges over 256 x 200 = 51,200 (see Appendix A), solving C.l is equiva- 
lent to diagonalizing a 51,200 x 51,200 matrix R(c. c’), which is practically 
impossible even by today’s computing standards. Luckily this diago- 
nalizing turns out to be unnecessary, because of a technique called the 
snapshot method invented by Sirovich (1987). 

The method asserts that the eigenmodes are linear combinations of 
the original surfaces and can be written as 

(C.3) 

Substituting C.3 into equation C.l  and exchanging the order of sum- 

l N  
P,(c) = C c(r’(c) 

p=l 

mation and integration, equation C.l can be rewritten as 

where 

Rllp = - dcr”(c)rp(c) 
N ‘s 

is an N x N matrix. This implies that the coefficients a: satisfy 

K.5) 

Solving this equation is equivalent to diagonalizing an N x N matrix. 
For N = 200 this can be very easily done. The snap-shot method has 
turned the nontractable problem of diagonalizing a 51,200 x 51,200 ma- 
trix into an equivalent but much more tractable problem involving the 
diagonalization of a 200 x 200 matrix. 

To recover the original eigenmodes 9, one first solves C.6 for the coef- 
ficients a:. These define the linear combinations of the original surfaces 
rt(c) that must be combined in C.3 to recover PI.  
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