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We describe a computational model for inferring 3D structure from the
motion of projected 2D points in an image, with the aim of understanding
how biological vision systems learn and internally represent 3D trans-
formations from the statistics of their input. The model uses manifold
transport operators to describe the action of 3D points in a scene as they
undergo transformation. We show that the model can learn the generator
of the Lie group for these transformations from purely 2D input, provid-
ing a proof-of-concept demonstration for how biological systems could
adapt their internal representations based on sensory input. Focusing on
a rotational model, we evaluate the ability of the model to infer depth
from moving 2D projected points and to learn rotational transformations
from 2D training stimuli. Finally, we compare the model performance to
psychophysical performance on structure-from-motion tasks.

1 Introduction

When interacting in a three-dimensional world, humans must estimate 3D
structure from visual inputs projected down to two-dimensional retinal im-
ages. This problem of recovering 3D structure from 2D projections is gener-
ally underconstrained, as there are infinite numbers of possible depths for
any given 2D point. To resolve this challenge, humans rely on a variety of
cues when inferring depth, including motion parallax, binocular disparity,
texture, occlusions, shadows, size, blur, and shading (Reichelt et al., 2010).
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2506 M. Connor, B. Olshausen, and C. Rozell

Specifically, the persistence of object shape over motion-induced transfor-
mations provides a powerful cue, even in the absence of other cues (Pe-
tersik, 1979; Braunstein et al., 1987; Todd et al., 1988; Dosher et al., 1989;
Sperling et al., 1989; Braunstein, 2014), that can be used to resolve the depth
ambiguity for points on an object’s surface and improve accuracy of depth
perception.

Mental transformation experiments (Shepard & Cooper, 1986; Lamm
et al., 2007), as well as qualitative descriptions from subjects performing
mental transformation tasks (Zacks & Michelon, 2005), suggest that humans
internally imagine 3D spatial transformations when performing tasks such
as identifying rotated reference objects (Shepard & Metzler, 1971; Cooper
& Shepard, 1973; Just & Carpenter, 1985). However the mechanism in the
brain for representing internal transformations is not well understood. The
aim of this work is to present a model for how biological vision systems may
internally represent 3D transformations, how they could learn or adapt to
the statistics of these 3D transformations with minimal supervision, and
how this knowledge could be used to aid in discerning structure from
motion.

Motivated by the manifold hypothesis, which states that natural varia-
tions in high-dimensional data lie on or near a low-dimensional, nonlinear
manifold (Fefferman et al., 2016), we introduce generative manifold mod-
els as a possible mechanism for learning and representing internal models
of natural motion-induced transformations. These models represent mani-
folds through continuous, nonlinear transformation operators that traverse
the geometric structure of the manifold (Culpepper & Olshausen, 2009;
Sohl-Dickstein et al., 2010; Connor & Rozell, 2020; Connor, Canal, & Rozell,
2021; Connor, Fallah, & Rozell, 2021). The transformation operators can be
used to infer relationships among different object views and to interpolate
or extrapolate views of transformed objects. While transformation opera-
tors have previously been used to learn 3D transformations from 3D stim-
uli, we introduce a novel approach that adapts to the setting of 2D stimuli
undergoing 3D motion. Our approach enables simultaneous inference of
depth and transformational motion from 2D stimuli, and our model can be
used to learn 3D transformations with limited supervision. Neuroscience
research has suggested that the brain explicitly exploits the manifold struc-
ture of object variations by using hierarchical processing stages to flatten
the manifolds produced by different objects undergoing the same physical
transformations (e.g., changes in pose and position; DiCarlo & Cox, 2007;
DiCarlo et al., 2012), but to our knowledge, no detailed model has been pro-
posed for how a biological system could learn or represent the manifolds
of such natural variations from data.

Notably there are precise definitions of motion-induced geometric trans-
formations such as rotations and translations that can be employed to
successfully compute point depths from multiple viewpoints (Longuet-
Higgins, 1981; Fischler & Bolles, 1981; Tomasi & Kanade, 1992; Nistér, 2005;
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Learning 3D Transformations From 2D Projected Inputs 2507

Pollefeys et al., 2008; Snavely et al., 2006) or frames (Godard et al., 2017;
Garg et al., 2016; Xie et al., 2016; Zhou et al., 2017), and there are many
neural network–based models for successfully inferring point depth (Eigen
et al., 2014; Ladicky et al., 2014; Liu et al., 2015; Godard et al., 2017; Garg
et al., 2016; Xie et al., 2016; Zhou et al., 2017). However, these techniques
are focused on achieving computer vision performance objectives, such as
high computation speed and low depth reconstruction error instead of be-
ing focused on the biological plausibility of their algorithms. In contrast, our
work presents a neurally plausible model, and our analysis is intentionally
restricted to simple 2D stimuli of 3D motion that can provide a proof of
concept for the viability of learning and adapting 3D transformation repre-
sentations from 2D projected inputs. Focusing on the rotational motion that
is used in many structure-from-motion tasks (Petersik, 1979; Dosher et al.,
1989; Braunstein, 2014), we develop a manifold-based method for inferring
depth from moving 2D projected points and learning 3D rotational trans-
formation models from 2D training stimuli. Finally, we apply the learned
transformation model to structure-from-motion tasks and compare to hu-
man performance on psychophysical experiments.

2 Background

In this work, we focus on the development of a model that can learn trans-
formations that may be used to model internal mental rotation. While there
have been computational models introduced for mental rotation (Funt,
1983; Fukumi et al., 1997; Inui & Ashizawa, 2011; Seepanomwan et al., 2015),
they have assumed prior knowledge of the rotational transformations and
been focused on modeling specific brain areas that are involved in this pro-
cess. In contrast, we focus on the representation of the transformation model
itself, including the learning and inference process within such a model.

We use our model of 3D transformations to infer point depths from 2D
projections of moving points. The ability for humans to perceive depth
from moving points and objects, known as the kinetic depth effect (Wallach
& O’Connell, 1953), has been extensively studied in both psychology and
computer vision. The kinetic depth effect has been investigated through a
wide array of psychophysical experiments suggesting that humans can gen-
erate stable precepts of 3D structures under a wide variety of conditions
(Petersik, 1979; Braunstein et al., 1987; Todd et al., 1988; Dosher et al., 1989;
Sperling et al., 1989; Braunstein, 2014).

Computational models have been developed to estimate 3D point-cloud
structure from multiple views of an object or scene. Multiview geome-
try (Longuet-Higgins, 1981; Tsai & Huang, 1984; Hartley, 1997; Hartley
& Sturm, 1997; Hartley & Zisserman, 2004) and factorization methods
(Tomasi & Kanade, 1992; Kanade & Morris, 1998) have been used to esti-
mate the 3D structure from rigid body motion. Factorization methods have
been extended to estimate nonrigid structure from motion by introducing
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2508 M. Connor, B. Olshausen, and C. Rozell

additional constraints encouraging low-rank (Bregler et al., 2000; Dai et al.,
2014), union-of-subspaces (Agudo et al., 2018; Zhu et al., 2014), and block
sparsity (Kong & Lucey, 2016, 2019). These techniques assume prior knowl-
edge of the types of transformations present in temporal visual inputs (i.e.,
rotation and translation used to represent camera motion) and rely on a
mathematical specification of how to apply rotational and translational mo-
tion through matrix multiplication.

Additionally, many neural network–based models have been introduced
for estimating depth from the motion two-dimensional points. These mod-
els use 3D depth labels (Eigen et al., 2014; Ladicky et al., 2014; Liu et al.,
2015), knowledge of camera viewpoints (Godard et al., 2017; Garg et al.,
2016; Xie et al., 2016), and temporal consistency (Zhou et al., 2017) to su-
pervise learning. Several methods use an image reconstruction objective by
estimating depth, in one image, transforming it, and projecting it to com-
pare against a second image (Godard et al., 2017; Garg et al., 2016; Xie et al.,
2016). All of these methods for estimating structure from motion, while
very successful at estimating camera motion and depth, have requirements
that make them poor representations of the neural mechanisms for learning
types of motion, inferring motion in scenes, and estimating point depths.
We cannot assume that vision systems know ground-truth point depths or
how to apply natural transformations during the development of mecha-
nisms for estimating motion and depth of scenes. In this work, we learn
a representation of 3D transformations from observed point motion itself,
without a prior assumption of how these transformations affect points in
a scene. Importantly, this model is learned using only 2D moving points
without requiring ground-truth knowledge of point depth. This work does
not aim to compete with current structure-from-motion techniques used in
computer vision but instead aims to add to our understanding about how
the models of motion that are essential for mental structure-from-motion
tasks are developed internally.

3 Model Description

We aim to develop a model for learning 3D rotational transformations from
2D projected inputs and to use that model to describe how humans may
employ motion cues to recover the 3D structure of objects in their environ-
ment. This perceptual setting is visualized in Figure 1 where an object is
transforming in 3D but the visual inputs are in the form of 2D projections
on the retina. In particular, each object is represented as a combination of 3D
key points x(i) ∈ R

3, i = {1, . . . , NP} that are projected to 2D point locations
y(i) ∈ R

2. We assume rigid body motion and incorporate a transformation
model that can constrain the possible 3D motion between different trans-
formed viewpoints. This provides the structure necessary to infer depth
from points on a moving object. We develop a method that uses a gener-
ative manifold model as a representation of transformations, and we show
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Learning 3D Transformations From 2D Projected Inputs 2509

Figure 1: Visualization of the 3D depth inference problem. Three-dimensional
points on an object are jointly transformed in the 3D worldview, and the visual
inputs are in the form of 2D projected points.

that we can learn rotational transformation operators and use them to accu-
rately infer point depth from rotating points and scenes. We build up to the
learnable model of natural transformations in two steps. In the first step, we
assume the 3D rotational transformation model is known, and we develop
a method for inferring the depth of 2D projections of rotating points. In the
second step, we use the depth inference approach from the first step to de-
velop a learning model that can adapt the transformation representation
to ensure it corresponds to the real-world transformations. We will preface
the descriptions of each of these tasks with an overview of the transport
operator model, a learnable generative manifold model.

3.1 Transport Operator Model. The transport operator technique is a
specific manifold learning model that learns to transform points through
nonlinear Lie group operators, known as transport operators, that trans-
verse a manifold (Rao & Ruderman, 1999; Miao & Rao, 2007; Culpepper
& Olshausen, 2009; Sohl-Dickstein et al., 2010; Cohen & Welling, 2014;
Hauberg et al., 2016; Connor & Rozell, 2020; Connor, Canal, & Rozell, 2021).
Lie group operators represent infinitesimal transformations that can be ap-
plied to data through an exponential mapping to transform points along a
manifold. In particular, this model learns a dictionary of M transport op-
erators �m that each represent a different transformation. These operators
are effective for representing an internal transformation model for a few
reasons. First, once learned, the transport operators are stored as a repre-
sentation of possible transformations that may be experienced or observed.
This means they can be reused in the future when the same type of trans-
formation is visualized. Second, the transport operator model is a genera-
tive manifold model, meaning that it can interpolate and extrapolate new
views of points undergoing a learned transformation. This provides a way
of creating an internal visualization of how an object transforms similar
to what humans describe when performing mental transformation tasks
(Zacks & Michelon, 2005). Finally, transport operators can be used to in-
fer the relationship between points in two separate viewpoints and define
the 3D transformations between them.
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2510 M. Connor, B. Olshausen, and C. Rozell

With the transport operator model, the relationship between two indi-
vidual 3D points x(i)

0 and x(i)
1 is defined as follows:

x(i)
0 = expm

(
M∑

m=1

�mcm

)
x(i)

1 + n,

n ∼ N (0, I) cm ∼ Laplace
(

0,
1
ζ

)
, (3.1)

where c ∈ R
M is the set of coefficients that specifies the local structure

of transformations between x(i)
0 and x(i)

1 . Given this relationship between
points, the original work from Culpepper and Olshausen (2009) defines the
negative log posterior of the model as

E� = 1
2

∥∥∥∥∥x(i)
0 − expm

(
M∑

m=1

�mcm

)
x(i)

1

∥∥∥∥∥
2

2

+ γ

2

∑
m

‖�m‖2
F + ζ‖c‖1, (3.2)

where ‖ · ‖F is the Frobenius norm and γ , ζ ≥ 0. The first term is a data fi-
delity term that specifies how well x(i)

0 can be represented as a transformed
version of x(i)

1 when the transformations are constrained by the current dic-
tionary of operators �. The data fidelity objective term is an indication of
how well the transport operators fit the data manifold. The second term
is a Frobenius norm regularizer on the dictionary elements that constrains
the growth of the dictionary magnitudes and helps identify how many op-
erators are necessary for representing transformations on the data man-
ifold. The third term is the sparsity regularizer, which encourages each
transformation between point pairs to be represented with a sparse set of
coefficients.

Given a dictionary of operators �, the 3D transformation between x(i)
0

and x(i)
1 can be estimated by inferring a set of transport operator coefficients

c. This inference is performed by minimizing E� when γ = 0. If the oper-
ators need to be learned or adapted, E� is used as an objective for trans-
port operator training as well. Training proceeds by alternating between
performing coefficient inference between point pairs while fixing the trans-
port operators and taking gradient steps on the transport operators while
fixing the coefficients. This process of alternating between coefficient in-
ference and dictionary updates is standard for sparse dictionary learning
(Olshausen & Field, 1997).

We adapt the transport operator model to use time-varying views of
transforming points in a 2D projection plane to learn a generative motion
model. We begin by developing an inference procedure that enables joint
depth estimation and coefficient inference from pairs of points of 2D inputs
in different viewing frames.
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Learning 3D Transformations From 2D Projected Inputs 2511

Figure 2: (a) Top-down views of the depth inference problem setup for points
rotating on a cylinder. The 3D points x(i) have an associated depth λ(i). Each
point is projected onto the orange viewing plane using the projection matrix K.
This results in the 2D projected points y(i). The 3D points are rotating counter-
clockwise around the axis and the points in the blue shaded box on top indicate
the direction of motion of the projected points. (b) Visualization of the inference
window sequence for a single point. The inference window is made up of sev-
eral frames of transformed points. We assume that the transformation speed is
constant between the frames, resulting a constant coefficient value representing
the transformation from one frame to the next. The depth λ is inferred for the
final frame in the sequence.

3.2 Depth Inference with Projected Inputs. In this section, we assume
that the rotational transport operators are either known a priori or already
learned. We describe the training procedure in section 4.2. Figure 2a shows
a top-down view of the setup of this problem. The eye located at the red × in
the center represents the viewer at the origin. The placement of the viewer at
the origin is natural for learning a representation of self-motion in an ego-
centric viewing framework where the human is the origin. However, the
model is flexible, and the same setup can be used to infer object motion
in the allocentric viewing framework (see appendix A for more details).
Each 3D point x(i) is projected onto the viewing plane to a corresponding
2D point y(i) with an associated depth λ(i): y(i) = Kx(i). The matrix K is the

orthographic projection matrix defined as K =
[

1 0 0
0 1 0

]
in all of our ex-

periments. This projection matrix corresponds to setting the viewing plane
to the xy-plane and defining the unknown depth as the z-coordinate of the
3D input points. It is assumed that the K is known during processing. We
observe NP points transforming jointly on a rigid object and concatenate all
NP points into a matrix: X0 = [

x(1)
0 ....x(NP )

0

]
.
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The relationship between points in two consecutive frames at t = 0 and
t = 1 is defined as

Y0 = KT(c)X̂1 (λ) + W, (3.3)

where W is a gaussian noise matrix, X̂1 is a matrix of estimated 3D point lo-
cations associated with Y1, and T(c) is the matrix exponential of a weighted
combination of transport operators that can each represent a different type
of motion:

T(c) = expm

(
M∑

m=1

�mcm

)
. (3.4)

In equation 3.3, we define Y0 at t = 0 as a transformation of points at
t = 1 in order to estimate the 3D point locations in X̂1 at t = 1 in a causal
manner, as we describe below. To compute X̂1, we reverse the process of the
projection matrix in two steps. First, we concatenate the Y1 with a vector of
zeros in the z-coordinate position that is lost during projection:

X̃1 =
[

y(1)
1 · · · y(NP )

1

0 · · · 0

]
. (3.5)

Second, we add the depths to the newly introduced dimension. To do
this, we compute the outer product between the standard basis vector asso-
ciated with the axis lost during projection ez and the depth vector λ ∈ R

NP ,
resulting in a matrix with two rows of zeros and one row containing the
estimated depths, and add that to X̃1:

X̂1 (λ) = X̃1 + ezλ
�. (3.6)

This model for incorporating the estimated depths can be integrated into
the data fidelity term of the objective function in equation 3.2 and used for
jointly inferring the depth λ and coefficients c between point pairs:

Ldf = 1
2

NP∑
i=1

‖y(i)
0 − KT(c)̂x(i)

1

(
λ(i))‖2

2 (3.7)

= 1
2

trace
((

Y0 − KT(c)X̂1(λ)
)� (

Y0 − KT(c)X̂1(λ)
))

. (3.8)

We add two more constraints to this model to improve the consistency
of accurate depth estimation. First, we incorporate a gaussian prior on the
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Learning 3D Transformations From 2D Projected Inputs 2513

depths, which constrains them to magnitudes consistent with the ground-
truth depths of the rotating objects. Second, we group several consecutive
views of the transforming points to reverse the projection procedure on
points in the final frame in the sequence. We refer to this sequence of frames
as the inference window. During inference and learning, we use ground-
truth knowledge of point correspondences between frames. From this in-
ference window, we can obtain a causal estimate of the depth in the final
frame and infer a fixed set of coefficients that represents the transforma-
tions between each consecutive view. This assumes a fixed transformation
speed over multiple frames, which can be seen as an extension of the slow-
ness principle to natural transformations that persist over time (Wiskott &
Sejnowski, 2002). Figure 2b shows this setting where the same coefficients
c are inferred between points in each neighboring frame and the depth is
inferred for the final point in the sequence. Using more than two motion
frames for depth inference provides additional information that can be used
to resolve depth ambiguities. To model this setting, we generalize equa-
tion 3.3 for NT viewing frames,

YNT−n = KTn(c)X̂NT (λ) = KT(nc)X̂NT (λ) , n = {1, . . . , NT}, (3.9)

where the change from Tn(c) to T(nc) is possible because raising an expo-
nent to the power of n is the same as applying the same transformation T(c)
n times and thus multiplying its transformation coefficients by n.

We define an objective that leverages multiple views and a depth
regularizer:

L = 1
2NT

NT∑
n=1

NP∑
i=1

[
‖y(i)

NT−n − KT(nc)̂x(i)
NT

(λ)‖2
2

]
+ ζ‖c‖1

+ β

2
‖λ‖2

2 + γ

2

∑
m

‖�m‖2
F . (3.10)

Notably the objective, equation 3.10, is nonconvex, presenting the pos-
sibility that inference may result in local minima. We take several steps to
avoid the local minima. First, the gaussian prior on the depth is a regularizer
that can incorporate information about expected depths of observed points,
constraining the inference. Second, we perform inference for the same infer-
ence window several times using several random restarts. That is, we ran-
domly sample a new initialization and infer coefficients and depths using
that starting point. In particular, we use random initializations with several
different variances to account for depths and transformations of different
magnitudes. When using several random initializations, we choose the in-
ferred output associated with the lowest final objective from inference.
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2514 M. Connor, B. Olshausen, and C. Rozell

Figure 3: Trajectories generated by ground-truth rotational transport operators.
Each line represents the trajectory of an individual transport operator dictionary
element applied to one of several example starting points selected on the sphere.
These three operators generate rotation around each of the three principal axes.

With this objective, the depth λ and the coefficients c can be jointly in-
ferred for sequences of transforming points. See section D for more details
on the inference process. To highlight the effectiveness of this inference
model, we will examine how accurately it can infer depths and transforma-
tions using ground-truth rotational operators and explore the requirements
for the inputs that lead to robust depth estimation.

4 Results

4.1 Depth Inference Experiments. Three-dimensional rotational ma-
trices can be defined as elements of the 3D rotational group SO(3), and
ground-truth rotational transport operators can be derived from elements
of the so(3) Lie algebra (Hall, 2015). Figure 3 shows the trajectories of these
ground-truth 3D rotational operators, each rotating around one of the prin-
cipal axes. These plots are generated by selecting a few example starting
points on a sphere and applying individual dictionary elements �m to each
point as they evolve over time: x(i)

t = expm(�m
t
T )x(i)

0 , t = 0, . . . , T.
Using equation 3.10 and the fixed � representing ground-truth rotational

operators, we jointly infer the coefficients and depths from a sequence of
transforming points. Figure 2b shows a visualization of this inference set-
ting for a single point. Given NT views of rotating points, we infer the depth
λ for the projected points in the last viewpoint YNT , as well as the coeffi-
cients c that correspond to the shared transformation between every pair of
consecutive views in the sequence. This ensures that the depths at time NT

are inferred by samples preceding it in the motion sequence, making this a
causal estimate.

Figure 4 shows examples of depth inference for points on the surfaces of
three different shapes. The plots in the first column show the visual input
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Learning 3D Transformations From 2D Projected Inputs 2515

Figure 4: Inferred depths for points on the surface of different shapes. The first
column shows the 2D point projections in the final viewing plane. The second
column shows a side view of the ground-truth 3D point stimuli where the x-
axis in the plots is the depth axis. The third column shows a side view of the
estimated depths for the projected points. The points in the second and third
columns are colored by the ground-truth depth. (a–c) Cylinder, (d–f) Sphere,
and (g–i) Cube.

of projected points in the final viewing plane of the sequence. The plots in
the second column show a side view of the point stimuli where the ground-
truth depth locations are shown on the x-axis of the plot. The plots in the
third column show a side view with the estimated depth locations for each
of the points. In both the second and third columns, the points are colored by
the ground-truth depths. This shows that the estimated depths correspond
with the ground-truth depths for a variety of shapes.

We quantitatively evaluate the accuracy of the inferred depths for many
trials to analyze the impact of various model parameters. There are three
parameters of particular interest during inference. First, we are interested
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2516 M. Connor, B. Olshausen, and C. Rozell

in the impact of the perceptual extent of rotation viewed in a sequence of
frames. The perceptual extent of rotation is a combination of two parame-
ters: the number of frames in a rotation sequence NT and the ground-truth
rotation angle between each frame in the rotation sequence θ . The full angu-
lar extent of rotation viewed is θpath = NTθ . Experiments have shown that
larger angular extents of rotation can lead to more accurate depth estimates
for human subjects (Hildreth et al., 1990). Next we are interested in the im-
pact of the number of jointly transforming points NP. This indicates the
amount of coherent rotational motion viewed in the input stimulus. Psy-
chophysical experiments have been run that indicate that a greater number
of coherently moving points leads to a more robust depth percept (Todd
et al., 1988; Dosher et al., 1989; Sperling et al., 1989; Braunstein et al., 1987).

In order to quantitatively evaluate the success of inferred depth, we use
two metrics. The first is the mean squared error between the estimated
depths and the ground-truth depths for the NP rotating points. Ideally
depth inference would result in low MSE between the estimated depth and
the ground-truth depth. However, with a rotational transformation, as we
are working with here, there exists a depth-angle ambiguity. Namely, when
viewing projected points y(i)

0 and y(i)
1 from two separate views, they could

be either projections of points with large depths that undergo rotation with
a smaller angle or points with small depths that undergo rotation with a
larger angle (see appendix B for a visualization). While it is not ideal for the
depth to be off by a scaling factor, the inferred structure can still be accurate.
Additionally, this depth ambiguity is observed in experiments with human
subjects (Todd et al., 1988). In psychophysical experiments, one metric for
determining accuracy of a percept is comparing the estimated ordering of
point depths to the ground-truth ordering of point depths (Hildreth et al.,
1990). To analyze the accuracy of the inferred structure in the presence of
potential scaling in depth, we compare the ordering of the inferred depths
to that of the ground-truth depths using Kendall’s tau rank correlation
coefficient (Kendall, 1938). We compare Kendall’s tau between all points
NP as well as between five randomly selected points. We choose to com-
pare the ordering of five randomly selected points in order to define a met-
ric that can be used to fairly compare the performance as the number of
points increases. With greater NP, even if depths are accurate within some
error range, there is a greater chance of incorrectly ordering a few points be-
cause there is a greater point density. Therefore, comparing five randomly
sampled points should provide a consistent metric as we vary NP.

Figures 5a and 5b show the median depth error as we vary the angular
extent of rotation θpath. In Figure 5a, each line represents a different number
of frames NT . The error bars in all plots represent the bootstrap confidence
interval. For each line in Figure 5a, because the values of NT are fixed, mov-
ing along the x-axis corresponds to increasing the angle between frames θ .
Each of these lines has a clear minimum, and this minimum occurs at an
angular extent in the range of NT to 2NT . This corresponds to an angle θ
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Learning 3D Transformations From 2D Projected Inputs 2517

Figure 5: Quantitative metrics for depth inference when varying the angu-
lar extent of rotation, the number of coherently transforming points NP, and
the standard deviation of gaussian noise added to the ground-truth operators.
(a) Median depth error as angular extent increases. Each line is generated with
different numbers of frames in the inference window NT . The optimal perfor-
mance occurs for angular extents in the range of NT to 2NT . (b) Median depth
error as angular extent increases. Each line is generated with different angles
of rotation between sequence frames θ . A rotation angle of θ = 2 results in the
lowest depth error at 180◦ of rotation. (c) Median depth error as NP increases.
(d) Mean Kendall’s tau for five randomly selected points as NP increases. Values
of this metric for NP < 5 are set to zero because there are not enough points to
compare five randomly selected points. (e) Median depth error as the standard
deviation of dictionary noise increases. (f) Mean Kendall’s tau for five randomly
selected points.

between frames of 1◦ to 2◦. Up to this minimum value, the depth error de-
creases as the rotational extent increases.

Figure 5b breaks down the performance for individual values of θ . As
θ increases up to θ = 2◦, the depth error decreases with increasing θ . For θ

greater than 5◦, the performance starts to degrade. This is consistent with
the patterns in Figure 5a, and it indicates that rotation angles that are too
large between frames (corresponding to fast rotational motion) result in less
accurate depth inference.1 In the remaining tests of inference performance

1
We should note that inference optimization experiences inaccuracy even with a large

number of random restarts as greater numbers of frames are used in the inference win-
dow, leading to large increases in depth error for NT > 50 in many settings. Therefore,
in Figure 5b, we only display lines until an angular extent of rotation for which the
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2518 M. Connor, B. Olshausen, and C. Rozell

with ground-truth operators, unless otherwise stated, we set NT = 30 and
θ = 2. See appendix D for more details on model parameters.

In these results, we see the impacts of the nonconvex objective function
on the performance of this model. At smaller rotational extents, the infer-
ence objective does not receive enough information to allow for success-
ful disambiguation between many possible solutions. This can result in the
inference procedure finishing in local minima with low objective function
values but with depths and coefficient values that do not reflect the true
point geometry and rotation sequence. With larger rotational extents, the in-
ference objective receives a more complete view of the transformation that
better constrains the optimization, resulting in low objective function val-
ues corresponding more directly with accurate depth inference. With high-
speed transformations that have large rotation angles between views, the
magnitudes of the coefficients corresponding to the true rotation increase.
This increases the space of possible coefficient values. Therefore, randomly
selecting initializations of the coefficients in the neighborhood of the true
minimum is less likely, which results in more solutions that correspond to
inaccurate local minima. The optimal values between NT and 2NT have a
large enough rotational extent such that low objective function values cor-
respond to accurate depths but small enough rotational extent that we can
randomly initialize inference with coefficients that result in minima close to
the ground-truth depth values.

While the characteristics above present challenges for accurate optimiza-
tion, they are informative about the situations in which we could expect
successful depth inference. Namely, we see the best depth inference for
angular extents between NT and 2NT with the angle between frames θ of
around 2◦. These constraints that are necessary for effective depth inference
in our model correspond to real-world constraints. For instance, with this
model of depth estimation, we would anticipate a human’s depth percept
to improve with greater rotational extent, and we would anticipate diffi-
culty with inferring depth when the speed of rotation is too great. Inter-
estingly, there is psychophysical research that shows that humans build up
an accurate estimate of depth when viewing longer rotational sequences
(Hildreth et al., 1990) as well as research that shows human subjects identify
the depth of moving points less often with larger angular rotation between
frames (Mather, 1989).

Figures 5c and 5d show the median depth error and the mean Kendall’s
tau as we vary NP. This shows that the depth estimation improves as more
points are added with a large performance improvement from NP = 1 to
NP = 10. We reason that this improvement is due to the reduction in trans-
formation ambiguity that results from seeing more points rotating jointly.

nonconvex optimization inaccuracy affects the solutions. The angular extent where this
occurs is smaller for the smaller values of θ because they require larger values of NT to
achieve the same angular extent of rotation.
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Learning 3D Transformations From 2D Projected Inputs 2519

Figure 6: Depth error for depth inference in the presence of mismatch between
the model assumptions and stimulus characteristics. (a) Depth error as the stan-
dard deviation of additive gaussian noise in the 2D point locations increases.
The model is robust to noise with a standard deviation up to around 10−2.
(b) Depth error as we increase the standard deviation of the gaussian noise
added to the magnitude of the rotation angles between frames in the inference
window θ . The model is robust to noise with a standard deviation up to around
10−1. (c) Depth error as the percent of incoherently moving points is increased.
The depth error quickly increases after 5% to 10% of points are incoherent.

The greater number of points on a rigid object undergoing the same trans-
formation, the more information our model has about the accurate transfor-
mation and depth. Going forward, we use NP = 20. Research in structure
from motion has shown that increasing the number of transforming points
improves the general depth percept (Todd et al., 1988; Dosher et al., 1989;
Sperling et al., 1989), but it may not increase the accuracy of the inferred
depths (Braunstein et al., 1987).

To better understand the performance of this model in the real world,
we analyze the robustness of our model when there is a mismatch between
the theoretical assumptions and the real-world data characteristics. Figure 6
shows the impact of adding noise to the point locations, adding variation
to the rotational speed, and varying the percentage of points moving in a
coherent direction.

Figure 6a shows the depth error as we add gaussian noise with progres-
sively larger standard deviations to the 2D point locations. This is similar
to a human having a slightly inaccurate estimate of the points’ locations
in space. Results indicate that the model is robust to noise with a standard
deviation of up to around 10−2. For reference, points in these experiments
have values in the range of [−1, 1].

Figure 6b shows the impact of variations to the speed of rotation between
frames. Our current model assumes that each frame in the inference win-
dow results from rotations with the same speed and direction as preceding
frames. In natural systems, objects are unlikely to undergo rotation at the
exact same speed over many frames. To test the effect of variations in the
rotation speed, we create rotation sequences in which each frame uses the
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2520 M. Connor, B. Olshausen, and C. Rozell

same axis of rotation, but the magnitude of the rotation angle is varied by
adding gaussian noise with a standard deviation scaled by the angle of ro-
tation.2 Our model is robust to variations in rotation speed up to a standard
deviation of around 10−1.

Finally, we analyze the performance of our model in the presence of
points that are moving incoherently with the rotating points. Figure 6c
shows the depth error as we increase the percentage of incoherently moving
points when NP = 100. This shows that incoherent points significantly affect
the accuracy of the 3D structure estimate. This analysis begins to quantify
impacts of experimenting in settings closer to the real world.

The final quantity we analyze in this controlled setting with ground-
truth rotational operators is the effect of adding gaussian noise to
the operators. Noisy operators depart from the ground-truth rotational
transformations, and analyzing the performance with noisy operators can
indicate the impact of accurate rotational transformation models on effec-
tive depth inference. Figures 5e and 5f show the median depth error and
mean Kendall’s tau metrics as noise is added to the ground-truth operators.
Both metrics indicate that the depth inference is robust to noise with a stan-
dard deviation of around 10−3 - 10−2 but performance decreases sharply
with noise larger than that. This shows that the model can perform ef-
fectively with some transformation inaccuracy, but performance decreases
with increasingly inaccurate transport operators. This highlights the neces-
sity of accurate rotational operators and inspires the learning and adapta-
tion procedure introduced and analyzed in the next section.

4.2 Learning 3D Transport Operators from 2D Projected Inputs. A
stated goal of this work is to develop a model that can learn 3D transforma-
tional representations from rotating 2D projected input points. The learn-
ing procedure is a straightforward extension of the coefficient and depth
inference model from the previous sections. Training of the transport op-
erator dictionary elements is performed using gradient descent. For each
training step, a sequence of projected rotated points Yn, n = {1, . . . , NT} is
generated. First, the dictionary weights are fixed, and the depth and coeffi-
cients are inferred. Then, fixing the depth and coefficients, the gradient on
the dictionary elements is computed using the objective in equation 3.10
with ζ = β = 0. If this gradient step improves the objective, then it is ac-
cepted. Otherwise, the step is rejected and the learning rate is decreased.
(See appendix E for more details on the training procedure.)

With this training procedure, we are able to learn rotational transport
operators from randomly initialized operators. Figure 7 shows the trajecto-
ries of the operators during one training run in which the number of dic-
tionary elements M is set to 3. At the beginning of training, the trajectories

2
The angles used in this experiment have a mean of 2◦.
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Learning 3D Transformations From 2D Projected Inputs 2521

Figure 7: Transport operator trajectories during training. Each row represents
one of the three learned operators. Each column shows the trajectories at a dif-
ferent training step. The operators begin with random initializations at step 1
and quickly reach a rotation structure around 200 steps. From 200 steps to 9000
steps, the operators vary relatively slowly, resulting in operators with clear ro-
tational structure at the end of training.

do not correspond to common geometric transformations, but they quickly
adapt to represent near-rotational operators with trajectories similar to the
ground-truth operators shown in Figure 3. In appendix E, we show an ex-
ample of learning rotational operators from a dictionary with six operators.

We quantitatively compare these operators to the ground-truth operators
using the same depth MSE and Kendall’s tau metrics employed to analyze
inference success. We can compute the depth error and Kendall’s tau met-
rics for inferred depths using operators at various points during training
and compare them to the metric values resulting from depth inference us-
ing the ground-truth operators with noise added. This gives us a proxy for
estimating the deviation between the learned operators and ground-truth
rotational operators. In Figure 8, we show the depth error and Kendall’s tau
for depths inferred using transport operators at different points in the train-
ing procedure. For reference, we also plot straight lines that correspond to
the values for these metrics in Figures 5e and 5f, which are computed using
ground-truth rotational operators with added noise with standard devi-
ations of 10−3, 10−2, 10−1, and 1. This shows that our method learns op-
erators that are close in structure to the ground-truth operators, and the
performance they achieve is similar to ground-truth operators with addi-
tive gaussian noise with a standard deviation of 10−2. Additionally we see
that the depth inference performance with learned operators improves sig-
nificantly over the first 100 to 200 training steps but requires fine-tuning for
many steps after that to achieve optimal performance.

4.3 Kinematogram Experiments. Random dot kinematograms are dis-
plays of dots on the surface of or within invisible rotating shapes. Still
frames of kinematogram inputs appear as random dots with no percep-
tible structure (see Figure 9a). However, the motion of the dots elicits the
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2522 M. Connor, B. Olshausen, and C. Rozell

Figure 8: Inferred depth metrics using operators at different steps in training.
Dashed lines represent values of error metrics for depths inferred using ground-
truth operators with additive gaussian noise with the standard deviation spec-
ified in the legend. These values are obtained from the plots in Figures 5e and
5f. (a) Median depth error for depth inference performed with operators at dif-
ferent steps in training. The depth error decreases significantly after 200 train-
ing steps and continues to decrease until the end of training. The depth error
achieves a value consistent with the estimates using ground-truth operators
with an additive gaussian noise with a standard deviation of 10−2. (b) Mean
Kendall’s tau for five randomly selected points. Kendall’s tau increases signif-
icantly around 200 training steps and starts to plateau around 1000 training
steps. It reaches a value consistent with ground-truth operators with a noise
standard deviation of 10−3.

Figure 9: Visualization of kinematogram visual stimuli. (a) Example of a 2D
kinematogram stimulus, which is the projection of random dots on the surface
of a cylinder. (b) 3D ground-truth structure of the points in the kinematogram
stimulus. The points are randomly sampled from the cylinder surface and col-
ored by their depth.
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Learning 3D Transformations From 2D Projected Inputs 2523

perception of a 3D structure. Figure 9 shows the 2D projection of random
points along with the 3D structure of the points on the surface of a cylin-
der. This perception of depth through motion is termed the “kinetic depth
effect” (Wallach & O’Connell, 1953). The random dot kinematogram vi-
sual stimulus has been used for many structure-from-motion experiments
because it isolates the use of motion cues from the use of other possible
depth cues. We use our depth inference model with transport operators
learned from 2D projections of rotational motion in order to estimate depths
for random points that are located within the volume of invisible rotat-
ing shapes. We compare characteristics of our experimental results to the
performance of humans on structure-from-motion tasks with random dot
kinematograms.

For these experiments, we create kinematogram stimuli by randomly se-
lecting NP 3D points within the volume of a cylinder. Sequences are gener-
ated by rotating points around the x-axis at a rotational speed specified by
the angle between frames θ . The points in each frame are ortographically
projected to the xy-plane. Point correspondences are estimated by pairing
nearest neighbors in the projected inputs from one frame to the next using
the Hungarian algorithm (Kuhn, 1955). We use the inference procedure de-
scribed in section 3.2 to infer the depth and coefficients. During inference,
we use an inference window of NT − 1 preceding frames to infer depths for
the points in the current frame. We can vary the parameters of the stimuli
and the inference procedure and analyze their impact.

Figure 10 shows depths that are inferred for a random dot kinematogram
sequence on a cylindrical structure by minimizing the objective in equa-
tion 3.10. In this experiment, NP = 20, θ = 2◦, and NT = 30. Each line in the
top and middle plots of Figure 10a is the depth for one of five stimulus
points. In the early stages of the kinematogram sequence, the number of
frames in the inference window is only as large as the number of frames that
have appeared (which is less than NT ). Once more than NT frames have ap-
peared, the depth and coefficient inference will make use of only the current
frame and the NT − 1 preceding frames. This buildup in the angular extent
of rotation explains the larger depth errors early in the sequence, and we
will analyze this further below.

The estimated depth in Figure 10 has discontinuities that result in the
sign of the depth switching. This natural phenomenon is due to the fact
that the orthographically projected random dot kinematogram stimulus is
a bistable perceptual representation (Andersen & Bradley, 1998). That is, it
is an ambiguous representation in which there are two correct perceptual
structures. All the points could be rotating in a clockwise direction with
a specific combination of positive and negative depths, or they could be
rotating in a counterclockwise direction with the opposite combination of
positive and negative depths. Each of these perceptual estimates is equally
correct for the stimulus. Therefore, when computing the error metrics, we
correct for the direction of the inferred rotation so it corresponds to the
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2524 M. Connor, B. Olshausen, and C. Rozell

Figure 10: Example of depths inferred for random dots in a kinematogram se-
quence. (a) In the top plot, each line represents the ground-truth depth of a
single random point over the rotational sequence of the kinematogram. In the
middle plot, each line represents the estimated depth for the same points as
in the top plot. The bottom plot shows the depth error between the estimated
and ground-truth depths over the sequence. (b) Each plot shows the estimated
depth for a single point with the sequences of positive and negative ground-
truth depths overlaid.

ground-truth direction (which is clockwise in all of our experiments). This
is done by generating a path with the inferred transformation coefficients
and identifying the rotation direction of the points on that path. If the in-
ferred rotation is moving in a counterclockwise direction, we reverse the
signs of the depths prior to computing the error metrics. The bottom plot
of Figure 10a shows the depth error for the kinematogram sequence. The
depth error is high at the beginning of the sequence due to the limited
angular extent of rotation. As the angular extent of rotation increases, the
depth error decreases and remains low even while the signs of the depths
switch. In Figure 10b, we overlay the estimated depth for individual points
on top of sequences with both positive and negative ground-truth depth
values. This shows, whichever direction of rotation is inferred, that the
depths are aligned with either the positive or negative ground-truth depth
values.

This bistable phenomenon is observed in pyschophysical experiments
as well. Specifically, subjects incorrectly identify the rotation direction of
orthographically projected stimuli 50.3% of the time (Petersik, 1979). In
the experiments shown in Figure 11a, the clockwise rotation is estimated
50.04% of the time.
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Learning 3D Transformations From 2D Projected Inputs 2525

Figure 11: Quantitative metrics for random dot kinematogram depth estimates.
Depth error and Kendall’s tau: (a, b) as NP increases. (c, d) as the standard de-
viation of noise added to the point locations increases.

Figure 11 contains plots demonstrating the performance of our model on
random dot kinematogram stimuli as we vary parameters of both the in-
ference algorithm and the kinematogram inputs. These plots compute the
depth MSE and Kendall’s tau for five randomly selected dots in the stim-
ulus. Figures 11a and 11b examine the influence of the number of stimulus
points.3 Increasing the number of points improves the accuracy of the depth
estimates but does not significantly affect the accuracy of the depth order-
ing. The Kendall’s tau values for NP ≥ 10 have a spike at the beginning of
the kinematogram sequence. This is due to the trade-off between the data fi-
delity term and the depth regularizer term in the objective. With fewer rota-
tional frames in the inference window early in the kinematogram sequence,

3
Note that in this experiment, we use ground-truth correspondences between sample

points in each kinematogram frame in order to focus on the impact of NP on the inferred
depth sequence independent of our point correspondence technique.
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2526 M. Connor, B. Olshausen, and C. Rozell

the optimization results in large magnitudes for the inferred depths that
lead to small errors in the data fidelity term but large values for the depth
regularizer. Therefore, the ordering of the depths is accurate, but the exact
depth values are inaccurate because they are off by a scale in magnitude.
As the kinematogram sequence continues, with more frames in the infer-
ence window, the magnitudes of the depths decrease and reduce the depth
regularizer term, but this leads to an increase in the data fidelity term as-
sociated with less accurate depth ordering. We see this as the depth error
decreases (because depth magnitudes are reducing) in conjunction with a
decrease in Kendall’s tau values. Decreasing the number of points elimi-
nates this spike.4 We examine the impact of adding gaussian noise to the
point locations in Figures 11c and 11d. The depth is consistently accurate
with point location noise up to a standard deviation of 10−2 and depth er-
ror increases after that. The introduction of point noise also eliminates the
spike in Kendall’s tau at the beginning of the sequence.

This perceptual buildup of an accurate estimate of point depths is ob-
served in structure-from-motion experiments (Hildreth et al., 1990). Hil-
dreth et al. performed experiments where they displayed orthographic
projections of three points rotating about a central axis and asked subjects
to order the depths of the three points. They computed the percentage of
correct ordering responses—a metric similar in nature to our Kendall’s tau
metric. They found that the percent of correct depth ordering increased as
the angular extent of rotation increased up to about 40◦ of rotation, after
which it plateaued. We observe the same buildup and plateau of point or-
dering accuracy (as judged by Kendall’s tau). They also observed degrada-
tion in performance as gaussian noise was added to the point locations, as
we see in Figure 11d.

5 Discussion

The main contribution of this work is a generative model framework for
learning and inference of 3D manifold-based transformations from 2D pro-
jections. A key innovation of the model is an inference procedure that
jointly estimates scene geometry (point depth) and transformation param-
eters from a sequence of 2D views via gradient descent through a transport
operator. Using this procedure, we show that it is possible to learn, with-
out any prior knowledge of transformations or point depth, the dictionary
elements that generate rotational motion from 2D projections of rotating
points. This model lays the groundwork for explaining the development
and adaptation of internal representations of natural variations that are ob-
served in the world. Additionally, our depth inference model enables the

4
The Kendall’s tau we report in Figure 11b is for five randomly selected stimulus

points, so the value for NP = 3 is set to zero because there are fewer than five points to
use for this metric computation.
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Learning 3D Transformations From 2D Projected Inputs 2527

investigation of data characteristics that may influence the capacity for ac-
curate depth estimation. This allows us to connect model performance with
various data characteristics and algorithmic parameters to human perfor-
mance on perceptual studies.

An important factor in accurate depth estimation and ordering is that a
large angular extent is spanned by the set of input frames used for infer-
ence (see Figures 5 and 11). This supports the notion that humans build up
their perception of 3D structure during random dot kinematogram rotation
sequences (Hildreth et al., 1990). We also show that increases in the num-
ber of random dot stimuli result in improvement in depth inference perfor-
mance (see Figures 5c, 5d, 11a, and 11b). This connects to kinematogram
experiments that indicate a greater number of coherently transforming
points results in a stronger depth percept from moving points (Todd et al.,
1988; Dosher et al., 1989; Sperling et al., 1989; Braunstein et al., 1987). Our
model also demonstrates the same direction switching phenomenon with
the bistable kinematogram stimulus that humans perceive (Petersik, 1979).

5.1 Psychophysical Implications. Our model has the flexibility to
adapt to many different test scenarios that are inspired by human perfor-
mance on mental rotation and structure-from-motion tasks. In our experi-
mentation, we tuned parameters like the inference window length NT , the
angle between frames θ , and the number of stimulus points NP to achieve
the most accurate depth estimates. However, experiments show that even
when humans perceive the correct shape, they often have inaccurate esti-
mates of depth magnitude (Todd et al., 1988), especially when viewing lim-
ited numbers of transforming points (Dosher et al., 1989). From our model
performance, this may suggest that humans rely on a smaller angular ex-
tent of rotation for inferring depth or that they do not utilize a prior on
expected depths. In the future, we can vary our model parameters to ex-
plore comparisons with potentially inaccurate human depth estimation in
various test settings.

In this work, we do not directly relate the internal rotation model de-
veloped here to the rich area of mental rotation experiments. In particular,
the seminal work in that area suggests a monotonically increasing relation-
ship between rotation angle between views of an object and the human
reaction time (Shepard & Metzler, 1971). The manifold-based model pre-
sented here may have a similar connection between processing time and
rotation angle because the transport operators can generate transforma-
tions similar to the internal representation of 3D rotations described by hu-
mans in these studies. It may be fruitful to examine the performance of our
transformation model on mental rotation tasks and compare to human per-
formance on similar tasks.

5.2 Future Improvements. Ultimately, addressing the underlying
neural mechanisms of 3D perception will require formulating a more
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2528 M. Connor, B. Olshausen, and C. Rozell

biologically plausible model. The inference and learning in the current
model are performed using quasi-Newton optimization and gradient de-
scent, respectively. The optimization objective is nonconvex and does not
naturally lend itself to a parallel representation similar to neural architec-
tures. Moving forward, we suggest developing an optimization procedure
that is more biologically plausible.

As our focus in this work is on the development of a transformation
learning framework, we assume ground-truth point correspondences for
the learning and inference experiments in section 4.1 through section 4.2.
However, identifying point correspondences from different views of the
same scene is a challenging task and one that has been a focus of many
computer vision algorithms (Ullman, 1979; Fischler & Bolles, 1981; Zbontar
et al., 2016; Luo et al., 2016). Going forward, incorporating point correspon-
dence estimates into this framework will lead to a more versatile, biologi-
cally plausible model.

Finally, a step toward biological plausibility is extending this model to
be robust to incoherent point motion and additional moving objects. An
initial approach to improving the robustness to incoherent motion is to em-
ploy random sample consensus (RANSAC; Fischler & Bolles, 1981). With
this method, transport operator coefficients could be estimated from ran-
dom subsets of points in the scenes, and the final transformation parame-
ters could be chosen as those that explain the transformation between the
largest number of random subsets of points.

Appendix A: Egocentric versus Allocentric

The model presented can be applied to two viewing frameworks: the al-
locentric framework in which points rotate around the observer and the
egocentric framework in which the observer rotates with respect to the
surrounding world. When the motion is centered around the origin (i.e.,
when the origin of the observer coordinate system and the world coor-
dinate system is the same), the allocentric and egocentric learning frame-
works utilize the exact same model. Comparing Figures 2a and 12a, the
only difference between the allocentric and egocentric frameworks when
motion is centered at the origin is the direction in which the projected points
move with respect to the rotational motion. When the viewer rotates in
a counterclockwise direction in the egocentric framework, the projected
points with positive depth (i.e., points in front of the viewer) move to the
right in the viewing plane. When the points rotate in a counterclockwise
direction in the allocentric framework, the projected points with positive
depth move to the left in the viewing plane. Therefore, the model and ex-
periments can correspond interchangeably to the egocentric or allocentric
frameworks.

For the work presented here, we are assuming that the motion generated
by the transformations we wish to learn is centered at the viewer location.
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Learning 3D Transformations From 2D Projected Inputs 2529

Figure 12: Top-down views of the depth inference problem setup in an allocen-
tric framework where the object rotates around the observer. The 3D points x(i)

have an associated depth λ(i). Each point is projected onto the orange viewing
plane using the projection matrix K. This results in the 2D projected points y(i).
(a) Example when the origin of the motion is located at the viewer location. The
3D points are rotating counterclockwise around the axis, and the points in the
blue shaded box on top indicate the direction of motion of the projected points.
(b) Example when the origin of motion is offset from the viewer location.

However, if the origin of transformational motion is offset from the viewer
location (the example shown in Figure 12b), this model can be easily ex-
tended to incorporate an origin offset. This offset may be known a priori or
estimated by viewing the point motion over several frames.

Appendix B: Depth-Angle Ambiguity

Figure 13 shows a visualization of the depth-angle ambiguity that exists
with orthographic projection. When viewing projected points y(i)

0 and y(i)
1

from two separate views, these points could be either projections of points
with large depths that undergo rotation with a smaller angle θa or points
with small depths that undergo rotation with a larger angle θb.

Appendix C: Visualization of Operator Noise

Figures 5e and 5f show the quantitative impact that adding noise to ground-
truth rotation operators has on the accuracy of inferred depth. To provide
an intuitive understanding of the effect of noise on the operators, Figure 14
shows the example trajectories for operators with increased noise standard
deviation.
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Figure 13: Example of depth-angle ambiguity. Points y(i)
0 and y(i)

1 are projec-
tions of a 3D point that is transformed from view 0 (green points) to view 1
(pink points). These points could result from a small rotation angle θa on points
with large depth magnitudes or a larger rotation angle θb with smaller depth
magnitudes.

Figure 14: Examples of noisy operator trajectories. Each column shows exam-
ples of the ground-truth rotational operators with additive gaussian noise with
increasing standard deviation. Rows 1–3 show the trajectories for the three ro-
tational operators. Row 4 shows depth inferred for points projected from a ro-
tating cylinder using the three operators in each column. The operators do not
vary much in appearance from the ground-truth operators (first column) with
noise standard deviations of 0.01 or less. For noise standard deviations larger
than that, the operators diverge from rotational operators, and the point depths
no longer look like a cylinder.

Appendix D: Inference Details

We perform depth inference in sections 4.1 and 4.2 using the objective in
equation 3.10. In the inference experiments in section 4.1, we set γ = 0.1,
ζ = 0.01, and β = 10−3. These parameters are selected because they yield
accurate inferred depth estimates. We add gaussian noise with a standard
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Learning 3D Transformations From 2D Projected Inputs 2531

deviation of 10−3 to the ground-truth operators in most experiments in sec-
tion 4.1. Unless otherwise stated, we set NP = 20, θ = 2◦, and NT = 30. For
the quantitative analysis of inference on many trials, we use input points
that are 2D projections of random 3D points that are undergoing rotation
about a randomly selected 3D axis. The rotation angle used for a given trial
is sampled from a distribution with a mean of θ and a standard deviation
of 0.516◦.

Because the training objective is nonconvex, optimization may result in
local minima. To avoid resulting in local minima, we perform inference for
the same inference window several times using several random restarts.
That is, we randomly sample a new intialization and infer coefficients and
depths using that starting point. This often results in different final inferred
outputs. We choose the inferred output associated with the lowest final ob-
jective from inference. For the experiments in section 4.1, we use five ran-
dom restarts.

For the inference experiments, we compute the mean squared error be-
tween the ground-truth depths and estimated depths and Kendall’s tau be-
tween the ordering of the truth depths and estimated depths. As mentioned
in section 4.3, the kinematogram stimulus is bistable, which means it can
result in two separate percepts (i.e., clockwiserotation or counterclockwise
rotation). We observe switching in inferred direction and signs of the depths
with our model and account for that when computing the depth inference
metrics. Specifically we generate a path with the transformation defined by
the inferred coefficients and observe the direction of motion of that path to
determine which direction of rotation we inferred. If the inferred rotation is
counterclockwise, then we multiply the depths by −1 because the rotation
of the points in ground-truth sequence is clockwise.

Appendix E: Training Details

We train the transport operators using gradient descent. The operators are
intialized with gaussian noise with a standard deviation of 0.3. The training
run that resulted in the operators used in the kinematogram experiments
used the parameters in Table 1.

We begin training at a specific learning rate and increase it if there is a
successful learning step (i.e., one that decreases the learning objective) or
decrease it if there is a failed learning step. While large learning rates aid in
efficient gradient steps in the beginning of training, we find that decreasing
the learning rate consistently toward the end of training leads to more stable
final transport operator representations. Specifically, we start decreasing the
learning rate at 3000 training steps and decay it by a multiplication factor
of 0.9997 at each step.

Figure 15 shows the trajectories of operators learned when M = 6.
This highlights the usefulness of the Frobenius norm regularizer on the
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Table 1: Training Parameters for Learning Rotational Operators from 2D Pro-
jected Inputs.

Training Parameters

M : 3
lrbegin : 0.5
ζ : 0.1
γ : 0.15
β: 10−4

θ : 10◦
NT : 20
NP : 20
Training steps: 10,000
Number of restarts for coefficient inference: 25

Figure 15: Transport operator trajectories during training. Each row represents
one of the six learned operators. Each column shows the trajectories at a differ-
ent training step. The operators begin with random initializations at step 1 and
reach a rotation structure around 400 steps. After that, the three operators that
do not represent rotation have their magnitudes reduced because they are not
being used. At the end of training, there are three operators with clear rotational
structure.

dictionary elements. If a transport operator is not being used for represent-
ing manifold paths, then its magnitude is reduced to nearly zero. Train-
ing with six operators utilizes the following parameters: ζ = 0.1, γ = 0.08,

β = 10−4, θ = 10◦, NT = 20, NP = 20, 10,000 training steps, and 25 random
restarts.
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Table 2: Parameters for Random Dot Kinematogram Experiments.

Kinematogram Inference Parameters

ζ : 0.01
γ : 0.1
β: 0
θ : 2◦
ξ : 0
NT : 30
NP : 20
Number of restarts for coefficient inference: 5

Appendix F: Kinematogram Experimental Details

For the kinematogram experiments, we use the base set of parameters
shown in Table 2. For individual experiments, we vary subsets of the param-
eters from these baseline values. As with the other experiments, we correct
for depth sign switching before computing the error metrics for the kine-
matogram tasks.

Appendix G: Kinematogram Dynamic Regularization

Our model has the capability of reducing the amount of depth sign switch-
ing and transformation direction switching by adding a dynamic regular-
izer during inference. We assume that there is a constant speed of rotation
and encourage the transport operator coefficients to be similar from one
frame to the next. Note that we already utilize this coefficient consistency
in the inference procedure by inferring the same coefficients for all frames in
the inference window. The additional regularizer encourages the set of coef-
ficients to be similar from one inference window to the next. This amounts
to adding a term to the inference objective that incorporates the previous
coefficient estimate:

L = 1
2NT

NT∑
n=1

NP∑
i=1

[
‖y(i)

NT−n − KT(nc)̂x(i)
NT

(λ)‖2
2

]
+ ζ‖c‖1

+ β

2
‖λ‖2

2 + ξ

2
‖c − cprev‖2

2. (G.1)

With the addition of the dynamic regularizer on the coefficients, we in-
fer smooth depth estimates for kinematogram sequences. Figure 16 shows
the estimated depths and depth error with dynamic regularization. This
regularization eliminates sign-flipping, but it also affects the depth error
in the beginning frames of the kinematogram sequence. The initial depth
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Figure 16: Example of depths inferred for random dots in a kinematogram se-
quence with a dynamic regularizer. The dynamic regularizer removes the sign
switching of the depth values observed in Figure 10, but it also leads to larger
error early in the kinematogram sequence.

Figure 17: Quantitative metrics for random dot kinematogram depth estimates
with and without dynamic regularization.

estimates are less accurate because they use only a small window of frames
for depth inference, and the coefficient regularizer encourages coefficient
estimates in later frames to be similar to the initial inaccurate estimates.
The depth estimates eventually achieve low error as the inference window
gets larger.

The plots in Figure 17 compute the depth MSE for all NP points and
Kendall’s tau for five randomly selected dots in the stimulus. Figures 17a
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and 17b each show the impact of including the dynamic regularizer from
equation G.1. When ξ = 0, the median depth error looks the same as in
Figure 10, where it begins high due to the limited angular extent of rota-
tion and decreases as the kinematogram sequence continues. The Kendall’s
tau values with both ξ = 0 and ξ = 20 have a spike at the beginning of the
kinematogram sequence. Without the dynamic regularizer, the Kendall’s
tau value plateaus and remains around the same value until the end of the
sequence. As we saw in Figure 16, the integration of the dynamic regular-
izer on the coefficients leads to a delay in achieving optimal accuracy for
depth estimates measured by both the depth MSE and Kendall’s tau.
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