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Digital computers and neural networks would seem to be profoundly
different systems for computation: one represents information with
strings of 1s and 0s, the other as a set of analog values. One
manipulates these representations through a cascade of logical
operations coordinated by a central clock and processing unit, while
the other transforms representations via matrix-vector multiplications
and thresholding operations that run in loosely coordinated, parallel
streams. The first served as the workhorse of the computing industry
for more than half a century, while the second has only recently seen
widespread deployment as the new computing paradigm powering
artificial intelligence. Given such stark differences—both in their
computational architectures and the technologies they have enabled—it
may come as a surprise to learn that both architectures share a common
origin in this landmark paper.

Published in 1943 amidst a world in upheaval, Warren McCulloch
and Walter Pitts’s paper presented a highly original and thought-
provoking hypothesis: that human mental abilities, especially our
capacity for logical thought, stem directly from neuronal circuits in
the brain that themselves perform logical operations. While others such
as Turing had previously speculated about mental processes as a kind
of computation, no one had attempted to develop a computational
theory of mind rooted in the biophysical substrates of the brain—that
is, neurons. Their paper thus marks an important turning point in our
intellectual approach to studying and understanding the brain. It is
the product of an interdisciplinary collaboration born from a coming
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together of minds at the University of Chicago, where a revolutionary
new movement in “mathematical biology” was taking place under the
guidance of Nicolas Rashevsky. The premise of their approach was that
mathematical models could be used to gain new insight into biological
processes in much the same way that they had enabled powerful
theoretical advances in physics (Abraham 2002).

It was in Rashevsky’s group that McCulloch and Pitts first met.
Though McCulloch was trained as a neurologist, he was driven by the
desire to understand the connection between neural processes in the
brain and human thought. He had experimented with Boolean algebra,
but lacked the formal background to fully develop a mathematical
theory. Enter Walter Pitts, a self-educated wunderkind who had fully
mastered Whitehead and Russell’s Principia Mathematica at the age
of twelve and had begun working as a member of Rashevky’s group in
his late teens, not having obtained any formal degree. Pitts had been
working on a theory of neuron networks, but had not yet realized its
potential as a computational theory of the brain. Soon after meeting
McCulloch around the end of 1941, the two began working closely
together and became good friends, remaining so until their deaths in
1969 (Piccinini 2004).

Among the most enduring contributions of McCulloch and Pitts’s
paper are their hand-drawn diagrams of neural circuits hypothesized to
perform the fundamental operations that would constitute a system
of logical calculus. Today we readily recognize these diagrams as
the logic circuits—for example, and-gates, or-gates, and not-gates—
that lie at the core of every digital computer. However such circuits
were not at all obvious at the time, and in fact had not yet been
conceived. Interestingly, these inventions came about by contemplating
how the illusory sensation of heat, when preceded by touching cold,
could be explained from neuronal mechanisms. John von Neumann
subsequently took inspiration from these drawings as he was pondering
the design of the EDVAC computer, and his final report (von Neumann
1945)—considered highly influential to the first generation of computer
engineers (Godfrey 1993)—contained just two citations, both to
McCulloch and Pitts (1943).
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Introduction to McCulloch and Pitts (1943)

McCulloch and Pitts considered two types of networks, those without
loops (feedforward networks) and those containing loops (recurrent
networks). The first type are logical circuits supported on a directed acyclic
graph, and their achievement is a procedure to compute any boolean
function using them. As for nets with circles, they would be later clarified
by Stephen Kleene into what is now known as the class of finite automata.
More generally, by adding scanners, tape, and motors, McCulloch and
Pitts claimed that it was easily shown that their nets were computationally
equivalent to Turing machines. Their logical conclusion was that an
organism’s output was Turing computable if its brain circuitry consisted of
their proposed networks. While Alonzo Church arrived at the same result
on the level of behavior, McCulloch and Pitts argued this from the vantage
point of brain computation, which was remarkably novel for the time.

For those of us working in computational neuroscience today,
McCulloch and Pitts’s paper is widely recognized as the first serious
attempt tomodel computational processes in the brain.Nearly two decades
later, Frank Rosenblatt took their work a step further by incorporating
the idea of learning, an important aspect they had largely ignored. In
particular, he showed how the synaptic weights in a neural network could
be automatically adjusted from fed-back error signals in order to perform
specific tasks (Rosenblatt 1958, 1962). For this reason the Perceptron
model has largely subsumed the McCulloch–Pitts model and today forms
the core of the deep-learning algorithms powering artificial intelligence.

It is remarkable that one paper could have such far-reaching,
transformational impact. It is a testament to the power of the synthetic
approach in biology: just as the Wright brothers’ pondering of bird flight
forty years earlier led them not only to hypothesize, but to build and test
their designs in a flying machine (McCullough 2015), McCulloch and
Pitts’s pondering of the internal workings of the brain led them to create
a system of computation based on logic circuits that engineers could build
and test to great effect. In other words, the very act of thinking deeply about
biology’s solutions focuses the mind on a different set of problems and a
way of thinking that transcends the current technological paradigm and
stimulates the development of new ideas and innovation.

89



F O U N D A T I O N A L P A P E R S I N C O M P L E X I T Y S C I E N C E

Figure 1. The dual legacies of McCulloch and Pitts.

A final note about Walter Pitts: He was widely recognized as a genius
not only by McCulloch and von Neumann but also Norbert Wiener and
other great minds of the time. Shortly after completing this landmark
paper, Pitts went on to write another highly original and creative work,
“How We Recognize Universals,” which sought to understand the neural
mechanisms by which transformations on patterns such as shift or scaling
could be implemented by neural circuits in the brain (Pitts andMcCulloch
1947). His solution—a kind of dynamic routing circuit for remapping
from one reference frame to another—presaged and inspired similar
proposals made many decades later by other investigators (Hinton 1981;
Olshausen, Anderson, and Van Essen 1993; Arathorn 2002). For his PhD
thesis at MIT, under the guidance and encouragement of Wiener, Pitts was
working on probabilistic three-dimensional neural networks. Tragically,
this brilliant trajectory was brought to an end after a falling out between
McCulloch and Wiener. Pitts fell into depression, burned his thesis, and
ultimately died from alcoholism (Gefter 2015). E
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Warren S. McCulloch, University of Illinois
and Walter Pitts, University of Chicago

Abstract

Because of the “all-or-none” character of nervous activity, neural events and the
relations among them can be treated by means of propositional logic. It is found
that the behavior of every net can be described in these terms, with the addition
of more complicated logical means for nets containing circles; and that for any
logical expression satisfying certain conditions, one can find a net behaving in
the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net
behaving under one assumption, there exists another net which behaves under the
other and gives the same results, although perhaps not in the same time. Various
applications of the calculus are discussed.

I. Introduction
Theoretical neurophysiology rests on certain cardinal assumptions. The
nervous system is a net of neurons, each having a soma and an axon.
Their adjunctions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some
threshold, which excitation must exceed to initiate an impulse. This,
except for the fact and the time of its occurrence, is determined by
the neuron, not by the excitation. From the point of excitation the
impulse is propagated to all parts of the neuron. The velocity along
the axon varies directly with its diameter, from less than one meter
per second in thin axons, which are usually short, to more than 150

meters per second in thick axons, which are usually long.
A

Though many of their
assumptions still hold, it is
certainly not the case that
axonal conduction time can

be ignored.

The time for
axonal conduction is consequently of little importance in determining
the time of arrival of impulses at points unequally remote from the same
source. Excitation across synapses occurs predominantly from axonal
terminations to somata. It is still a moot point whether this depends

92



McCulloch and Pitts (1943)

upon irreciprocity of individual synapses or merely upon prevalent
anatomical configurations. To suppose the latter requires no hypothesis
ad hoc and explains known exceptions, but any assumption as to cause
is compatible with the calculus to come. No case is known in which
excitation through a single synapse has elicited a nervous impulse in any
neuron, whereas any neuron may be excited by impulses arriving at a
sufficient number of neighboring synapses within the period of latent
addition, which lasts less than one quarter of a millisecond. Observed
temporal summation of impulses at greater intervals is impossible for
single neurons and empirically depends upon structural properties
of the net. Between the arrival of impulses upon a neuron and its
own propagated impulse there is a synaptic delay of more than half a
millisecond. During the first part of the nervous impulse the neuron
is absolutely refractory to any stimulation. Thereafter its excitability
returns rapidly, in some cases reaching a value above normal from
which it sinks again to a subnormal value, whence it returns slowly to
normal. Frequent activity augments this subnormality. Such specificity
as is possessed by nervous impulses depends solely upon their time
and place and not on any other specificity of nervous energies. Of
late only inhibition has been seriously adduced to contravene this
thesis. Inhibition is the termination or prevention of the activity
of one group of neurons by concurrent or antecedent activity of a
second group. Until recently this could be explained on the supposition
that previous activity of neurons of the second group might so raise
the thresholds of internuncial neurons that they could no longer be
excited by neurons of the first group, whereas the impulses of the first
group must sum with the impulses of these internuncials to excite the
now inhibited neurons. Today, some inhibitions have been shown to
consume less than one millisecond. This excludes internuncials and
requires synapses through which impulses inhibit that neuron which is
being stimulated by impulses through other synapses. As yet experiment
has not shown whether the refractoriness is relative or absolute. We will
assume the latter and demonstrate that the difference is immaterial to
our argument. Either variety of refractoriness can be accounted for in
either of two ways. The “inhibitory synapse” may be of such a kind as
to produce a substance which raises the threshold of the neuron, or it
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may be so placed that the local disturbance produced by its excitation
opposes the alteration induced by the otherwise excitatory synapses.
Inasmuch as position is already known to have such effects in the case of
electrical stimulation, the first hypothesis is to be excluded unless and
until it be substantiated, for the second involves no new hypothesis. We
have, then, two explanations of inhibition based on the same general
premises, differing only in the assumed nervous nets and, consequently,
in the time required for inhibition. Hereafter we shall refer to such
nervous nets as equivalent in the extended sense. Since we are concerned
with properties of nets which are invariant under equivalence, we may
make the physical assumptions which are most convenient for the
calculus.

A
A key assumption of their

theory was that neurons were
equivalent to propositions,

and thus a level of functional
equivalence could be

established among neural
circuits even with quite

different biophysical
mechanisms.

Many years ago one of us, by considerations impertinent to this
argument, was led to conceive of the response of any neuron as factually
equivalent to a proposition which proposed its adequate stimulus. He
therefore attempted to record the behavior of complicated nets in the
notation of the symbolic logic of propositions. The “all-or-none” law
of nervous activity is sufficient to insure that the activity of any neuron
may be represented as a proposition. Physiological relations existing
among nervous activities correspond, of course, to relations among
the propositions; and the utility of the representation depends upon
the identity of these relations with those of the logic of propositions.
To each reaction of any neuron there is a corresponding assertion of
a simple proposition. This, in turn, implies either some other simple
proposition or the disjunction or the conjunction, with or without
negation, of similar propositions, according to the configuration of
the synapses upon and the threshold of the neuron in question. Two
difficulties appeared. The first concerns facilitation and extinction,
in which antecedent activity temporarily alters responsiveness to
subsequent stimulation of one and the same part of the net. The
second concerns learning, in which activities concurrent at some
previous time have altered the net permanently, so that a stimulus
which would previously have been inadequate is now adequate. But
for nets undergoing both alterations, we can substitute equivalent
fictitious nets composed of neurons whose connections and thresholds
are unaltered. But one point must be made clear: neither of us conceives
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the formal equivalence to be a factual explanation. Per contra!—
we regard facilitation and extinction as dependent upon continuous
changes in threshold related to electrical and chemical variables, such as
after-potentials and ionic concentrations; and learning as an enduring
change which can survive sleep, anaesthesia, convulsions and coma. The
importance of the formal equivalence lies in this: that the alterations
actually underlying facilitation, extinction and learning in no way affect
the conclusions which follow from the formal treatment of the activity
of nervous nets, and the relations of the corresponding propositions
remain those of the logic of propositions.

The nervous system contains many circular paths, whose activity
so regenerates the excitation of any participant neuron that reference
to time past becomes indefinite, although it still implies that afferent
activity has realized one of a certain class of configurations over
time. Precise specification of these implications by means of recursive
functions, and determination of those that can be embodied in the
activity of nervous nets, completes the theory.

II. The Theory: Nets Without Circles
We shall make the following physical assumptions for our calculus.

1. The activity of the neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the
period of latent addition in order to excite a neuron at any time,
and this number is independent of previous activity and position
on the neuron.

B
Again, these assumptions,
though perhaps reasonable in
1943, are not consistent with
our modern understanding of
the brain.

3. The only significant delay within the nervous system is synaptic
delay.

4. The activity of any inhibitory synapse absolutely prevents
excitation of the neuron at that time.

5. The structure of the net does not change with time.

To present the theory, the most appropriate symbolism is that of
Language II of R. Carnap (1938), augmented with various notations
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drawn from B. Russell and A.N. Whitehead (1925), including the
Principia conventions for dots. Typographical necessity, however, will
compel us to use the upright ‘E’ for the existential operator instead
of the inverted, and an arrow (“→”) for implication instead of the
horseshoe. We shall also use the Carnap syntactical notations, but print
them in boldface rather than German type; and we shall introduce
a functor S, whose value for a property P is the property which
holds of a number when P holds of its predecessor; it is defined by
‘S(P )(t) . ≡ . P (Kx) . t = x′)’; the brackets around its argument will
often be omitted, in which case this is understood to be the nearest
predicate-expression [Pr] on the right. Moreover, we shall write S2Pr
for S(S(Pr)), etc.

The neurons of a given net N may be assigned designations ‘c1’,
‘c2’, . . . , ‘cn’. This done, we shall denote the property of a number, that
a neuron ci fires at a time which is that number of synaptic delays from
the origin of time, by ‘N ’ with the numeral i as subscript, so that Ni(t)

asserts that ci fires at the time t. Ni is called the action of ci. We shall
sometimes regard the subscripted numeral of ‘N ’ as if it belonged to the
object-language, and were in a place for a functoral argument, so that it
might be replaced by a number-variable [z] and quantified; this enables
us to abbreviate long but finite disjunctions and conjunctions by the
use of an operator. We shall employ this locution quite generally for
sequences of Pr ; it may be secured formally by an obvious disjunctive
definition. The predicates ‘Nt’, ‘N2’, . . . , comprise the syntactical class
‘N ’.

Let us define the peripheral afferents of N as the neurons of N

with no axons synapsing upon them. LetN1, . . . ,Np, denote the actions
of such neurons and Np+1,Np+2, . . . ,Nn, those of the rest. Then a
solution of N will be a class of sentences of the form Si : Np+1(z1) . ≡
.Pri(N1,N2, . . . ,Np, z1), where Pri contains no free variable save z1
and no descriptive symbols save the N in the argument [Arg], and
possibly some constant sentences [sa]; and such that each Si is true of
N . Conversely, given a Pr1(1p11,1 p12, . . . ,1 p1p, z1, s), containing no free
variable save those in its Arg, we shall say that it is realizable in the
narrow sense if there exists a net N and a series of Ni in it such that
N1(z1) . ≡ .PR1(N1,N2, . . . , z1, sa1) is true of it, where sa1 has the form
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N(0). We shall call it realizable in the extended sense, or simply realizable,
if for some nSn(Pr1)(p1, . . . , pp, z1, s) is realizable in the above sense.
cpi is here the realizing neuron. We shall say of two laws of nervous
excitation which are such that every S which is realizable in either sense
upon one supposition is also realizable, perhaps by a different net, upon
the other, that they are equivalent assumptions, in that sense.

The following theorems about realizability all refer to the extended
sense. In some cases, sharper theorems about narrow realizability can be
obtained; but in addition to greater complication in statement this were
of little practical value, since our present neurophysiological knowledge
determines the law of excitation only to extended equivalence, and the
more precise theorems differ according to which possible assumption
we make. Our less precise theorems, however, are invariant under
equivalence, and are still sufficient for all purposes in which the exact
time for impulses to pass through the whole net is not crucial.

Our central problems may now be stated exactly: first, to find
an effective method of obtaining a set of computable S constituting
a solution of any given net; and second, to characterize the class of
realizable S in an effective fashion. Materially stated, the problems are
to calculate the behavior of any net, and to find a net which will behave
in a specified way, when such a net exists.

A net will be called cyclic if it contains a circle, i.e. if there exists a
chain ci, ci+1, . . . of neurons on it, each member of the chain synapsing
upon the next, with the same beginning and end. If a set of its neurons
ci, c2, . . . , cp is such that its removal from N leaves it without circles,
and no smaller class of neurons has this property, the set is called a cyclic
set, and its cardinality is the order of N . In an important sense, as we
shall see, the order of a net is an index of the complexity of its behaviour.
In particular, nets of zero order have especially simple properties; we
shall discuss them first.

Let us define a temporal propositional expression (a TPE), designating a
temporal propositional function (TPF ), by the following recursion.

1. A 1p1[z1] is a TPE, where p1 is a predicate-variable.

2. If S1 and S2 are TPE containing the same free individual variable, so
are SS1, S1vS2, S1. S2, and Si. ∼ . S2.
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3. Nothing else is a TPE.

Theorem I. Every net of order 0 can be solved in terms of temporal
propositional expressions.

Let ci be any neuron of N with a threshold θi > 0, and let
ci1, ci2, . . . , cip have respectivelyni1, ni2, . . . , nip excitatory synapses upon
it. Let cj1, cj2, . . . , cjq have inhibitory synapses upon it. Let κi be the
set of the subclasses of {ni1, ni2, . . . , nip } such that the sum of their
members exceeds θi. We shall then be able to write, in accordance with the
assumptions mentioned above,

Ni(z1). ≡ . S

{
q∏

m=1

∼ Njm(z1).
∑

αεκi

∏

sεα

Nis(z1)
}

(1)

where the ‘
∑

’ and ‘
∏
’ are syntactical symbols for disjunctions and

conjunctions which are finite in each case. Since an expression of this form
can be written for each ci which is not a peripheral afferent, we can, by
substituting the corresponding expression in (1) for eachNjm orNiswhose
neuron is not a peripheral afferent, and repeating the process on the result,
ultimately come to an expression for Ni in terms solely of peripherally
afferent N, since N is without circles. Moreover, this expression will be
a TPE, since obviously (1) is; and it follows immediately from the definition
that the result of substituting a TPE for a constituent p(z) in a TPE is also
one.

Theorem II. Every TPE is realizable by a net of order zero.
The functor S obviously commutes with disjunction, conjunction,

and negation. It is obvious that the result of substituting any Si, realizable
in the narrow sense (i.n.s.), for the p(z) in a realizable expression S1
is itself realizable i.n.s.; one constructs the realizing net by replacing
the peripheral afferents in the net for S1 by the realizing neurons in
the nets for the Si. The one neuron net realizes p1(z1) i.n.s., and
figure 1-a shows a net that realizes Sp1(z1) and hence SS2, i.n.s., if S2
can be realized i.n.s. Now if S2 and S3 are realizable then SmS2 and
SnS3 are realizable i.n.s., for suitable m and n. Hence so are Sm+nS2
and Sm+nS3. Now the nets of figures 1b, c and d respectively realize
S(p1(z1) v p2(z1)), S(p1(z1) . p2(z1)), and S(p1(z1) . ∼ p2(z1)) i.n.s.
Hence Sm+n+1(S1 v S2), Sm+n+1(S1 . S2), and Sm+n+1(S1 . ∼ S2) are
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realizable i.n.s. Therefore S1 v S2S1 . S2S1 . ∼ S2 are realizable if S1
and S2 are. By complete induction, all TPE are realizable. In this way
all nets may be regarded as built out of the fundamental elements of
figures 1a, b, c, d, precisely as the temporal propositional expressions are
generated out of the operations of precession, disjunction, conjunction,
and conjoined negation. In particular, corresponding to any description
of state, or distribution of the values true and false for the actions of all
the neurons of a net save that which makes them all false, a single neuron
is constructible whose firing is a necessary and sufficient condition for the
validity of that description.Moreover, there is always an indefinite number
of topologically different nets realizing any TPE.

Theorem III.Let there be given a complex sentence S1 built up in anymanner
out of elementary sentences of the form p(z1 − zz) where zz is any numeral,
by any of the propositional connections: negation, disjunction, conjunction,
implication, and equivalence. Then S1 is a TPE and only if it is false when its
constituent p(z1−zz) are all assumed false—i.e., replaced by false sentences—
or that the last line in its truth-table contains an ‘F’,—or there is no term in
its Hilbert disjunctive normal form composed exclusively of negated terms.

These latter three conditions are of course equivalent (Hilbert and
Ackermann 1927). We see by induction that the first of them is necessary,
since p(z1 − zz) becomes false when it is replaced by a false sentence, and
S1 v S2, S1 . S2 and S1 . ∼ S2 are all false if both their constituents are. We
see that the last condition is sufficient by remarking that a disjunction is a
TPE when its constituents are, and that any term

S1 . S2 . . . . Sm. ∼ Sm+1 . ∼ . · · · ∼ Sn

can be written as:

(S1 . S2 . . . . Sm) . ∼ (Sm+1 v Sm+2 v . . . . v Sn),

which is clearly a TPE.
The method of the last theorems does in fact provide a very convenient

and workable procedure for constructing nervous nets to order, for those
cases where there is no reference to events indefinitely far in the past in the
specification of the conditions. By way of example, we may consider the
case of heat produced by a transient cooling.
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A
McCulloch and Pitts attempt

to explain the hot–cold
illusion with logic gates.

If a cold object is held to the skin for a moment and removed, a
sensation of heat will be felt; if it is applied for a longer time, the sensation
will be only of cold, with no preliminary warmth, however transient. It
is known that one cutaneous receptor is affected by heat, and another by
cold. If we letN1 andN2 be the actions of the respective receptors andN3

andN4 of neurons whose activity implies a sensation of heat and cold, our
requirements may be written as

N3(t) :≡ : N1(t− 1) . v . N2(t− 3) . ∼ N2(t− 2)

N4(t) . ≡ . N2(t− 2) . N2(t− 1)

where we suppose for simplicity that the required persistence in the
sensation of cold is say two synaptic delays, compared with one for that
of heat. These conditions clearly fall under Theorem III. A net may
consequently be constructed to realize them, by the method of Theorem
II. We begin by writing them in a fashion which exhibits them as built out
of their constituents by the operations realized in Figures 1a, b, c, d: i.e., in
the form

N3(t) . ≡ . S {N1(t)vS[(SN2(t)) . ∼ N2(t)]}

N4(t) . ≡ . S {[SN2(t)] . N2(t)} .

First we construct a net for the function enclosed in the greatest number of
brackets and proceed outward; in this case we run a net of the form shown
in Figure 1a from c2 to some neuron ca, say, so that

Na(t) . ≡ . SN2(t).

Next introduce two nets of the forms 1c and 1d, both running from ca and
c2, and ending respectively at c4 and say cb. Then

N4(t) . ≡ . S[Na(t) . N2(t)] . ≡ . S[(SN2(t)) . N2(t)].

Nb(t) . ≡ . S[Na(t) . ∼ N2(t)] . ≡ . S[(SN2(t)) . ∼ N2(t)].

Finally, run a net of the form 1b from c1 and cb to c3, and derive

N3(t) . ≡ . S[N1(t) vNb(t)]

. ≡ . S{N1(t)vS[(SN2(t)]. ∼ N2(t)}.

These expressions for N3(t) and N4(t) are the ones desired; and the
realizing net in toto is shown in Figure 1e.
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This illusion makes very clear the dependence of the correspondence
between perception and the “external world” upon the specific structural
properties of the intervening nervous net. The same illusion, of course,
could also have been produced under various other assumptions about the
behavior of the cutaneous receptors, with correspondingly different nets.

We shall now consider some theorems of equivalence: i.e., theorems
which demonstrate the essential identity, save for time, of various
alternative laws of nervous excitation. Let us first discuss the case of relative
inhibition. By this we mean the supposition that the firing of an inhibitory
synapse does not absolutely prevent the firing of the neuron, but merely
raises its threshold, so that a greater number of excitatory synapsesmust fire
concurrently to fire it than would otherwise be needed. We may suppose,
losing no generality, that the increase in threshold is unity for the firing of
each such synapse; we then have the theorem:

Theorem IV.Relative and absolute inhibition are equivalent in the extended
sense.

We may write out a law of nervous excitation after the fashion of (1),
but employing the assumption of relative inhibition instead; inspection
then shows that this expression is a TPE. An example of the replacement
of relative inhibition by absolute is given by Figure 1f. The reverse
replacement is even easier; we give the inhibitory axons afferent to ci any
sufficiently large number of inhibitory synapses apiece.

Second, we consider the case of extinction. We may write this in the
form of a variation in the threshold θi; after the neuron ci has fired; to
the nearest integer—and only to this approximation is the variation in
threshold significant in natural forms of excitation—this may be written
as a sequence θi + bj for j synaptic delays after firing, where bj = 0 for j
large enough, say j = M or greater. We may then state

Theorem V. Extinction is equivalent to absolute inhibition.
For, assuming relative inhibition to hold for the moment, we need

merely runM circuits T1,T2, . . .TM containing respectively 1, 2, . . . ,M
neurons, such that the firing of each link in any is sufficient to fire the next,
from the neuron ci back to it, where the end of the circuit Tj has just bj
inhibitory synapses upon ci. It is evident that this will produce the desired
results. The reverse substitution may be accomplished by the diagram of
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Figure 1g. From the transitivity of replacement, we infer the theorem. To
this group of theorems also belongs the well-known

Theorem VI. Facilitation and temporal summation may be replaced by
spatial summation.

This is obvious: one need merely introduce a suitable sequence of
delaying chains, of increasing numbers of synapses, between the exciting
cell and the neuron whereon temporal summation is desired to hold. The
assumption of spatial summation will then give the required results. See
e.g. Figure 1h. This procedure had application in showing that the observed
temporal summation in gross nets does not imply such a mechanism in the
interaction of individual neurons.

The phenomena of learning, which are of a character persisting
over most physiological changes in nervous activity, seem to require
the possibility of permanent alterations in the structure of nets. The
simplest such alteration is the formation of new synapses or equivalent
local depressions of threshold. We suppose that some axonal terminations
cannot at first excite the succeeding neuron; but if at any time the neuron
fires, and the axonal terminations are simultaneously excited, they become
synapses of the ordinary kind, henceforth capable of exciting the neuron.
The loss of an inhibitory synapse gives an entirely equivalent result. We
shall then have

Theorem VII. Alterable synapses can be replaced by circles.
This is accomplished by the method of Figure 1i. It is also to be

remarked that a neuron which becomes and remains spontaneously active
can likewise be replaced by a circle, which is set into activity by a peripheral
afferent when the activity commences, and inhibited by one when it ceases.

III. The Theory: Nets with Circles

A
Their attempt to describe

networks with recurrence was
highly ambitious, but would

only later be clarified by
Kleene (YEAR).

The treatment of nets which do not satisfy our previous assumption of
freedom from circles is very much more difficult than that case. This is
largely a consequence of the possibility that activity may be set up in a
circuit and continue reverberating around it for an indefinite period of
time, so that the realizable Pr may involve reference to past events of an
indefinite degree of remoteness. Consider such a net N , say of order p,
and let c1, c2, . . . , cp be a cyclic set of neurons of N . It is first of all clear
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from the definition that every N 3 of N can be expressed as a TPE, of
N 1,N 2, . . . ,N p and the absolute afferents; the solution of N involves
then only the determination of expressions for the cyclic set. This done,
we shall derive a set of expressions [A]:

N i(z1). ≡ .Pri[Sni1N1(z1), Sni2N2(z1), . . . , SnipNp(z1)], (2)

where Pri also involves peripheral afferents. Now if n is the least common
multiple of the nij , we shall, by substituting their equivalents according to
(2) in (3) for theNj , and repeating this process often enough on the result,
obtain S of the form

N i(z1). ≡ .Pr1[SnN1(z1), SnN2(z1), . . . , SnNp(z1)]. (3)

These expressions may be written in the Hilbert disjunctive normal form
as

N i(z1). ≡ .
∑

αεκ
βαεκ

Sα

∏

jεκ

SnN j(z1)
∏

jεβα

∼ SnN j(z1),

for suitable κ,
(4)

where Sα is a TPE of the absolute afferents of N . There exist some
2p different sentences formed out of the pN i by conjoining to the
conjunction of some set of them the conjunction of the negations of the
rest. Denumerating these by X 1(z1),X 2(z1), . . . ,X 2p(z1), we may, by use
of the expressions (4), arrive at an equipollent set of equations of the form

X i(z1). ≡ .
2p∑

j=1

Prij(z1).SnX j(z1). (5)

Now we import the subscripted numerals i, j into the object-language:
i.e., define Pr1 and Pr2 such that Pr1(zz1, z1) . ≡ .X i(z1) and
Pr2(zz1, zz2, z1) . ≡ .Prij(z1) are provable whenever zz1 and zz2 denote
i and j respectively. Then we may rewrite (5) as

(z1)zzp : Pr1(z1, z3)
. ≡ . (Ez2)zzp .Pr2(z1, z2, z3 − zzn) .Pr1(z2, z3 − zzn)

(6)

where zzn denotesn and zzp denotes 2p. By repeated substitutionwe arrive
at an expression

(z1)zzp : Pr1(z1, zznzz2) . ≡ . (Ez2)zzp (Ez3)zzp . . . (Ezn)zzp.
Pr2(z1, z2, zzn(zz2 − 1)) .Pr2(z2, z3, zzn(zz2 − 1)) . . . .

(7)
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Pr2(zn−1, zn, 0) .Pr1(zn, 0), for any numeral zz2 which denotes s.
This is easily shown by induction to be equipollent to

(z1)zzp : .Pr1(z1, zznzz2) :≡: (Ef )(z2)zz2 − 1f (z2zzn)
! zzp . f (zznzz2) = z1 .Pr2(f (zzn(z2 + 1)),

f (zznz2)) .Pr1(f (0), 0)

(8)

and since this is the case for all zz2, it is also true that

(z4)(z1)zzp : Pr1(z1, z4) . ≡ . (Ef )(z2)(z4 − 1). f(z2)
! zzp . f (z4) = z1 f (z4) = z1 .Pr2 [f (z2 + 1), f (z2), z2] .
Pr1 [f (res( z4, zzn)), res (z4, zzn)] ,

(9)

where zzn denotes n, res(r, s) is the residue of r mod s and zzp denotes 2p.
This may be written in a less exact way as

Ni(t) . ≡ . (Eφ) (x)t− 1 .φ(x) ! 2p .φ(t) = i.

P [φ(x+ 1),φ(x) . Nφ(0)(0)],

where x and t are also assumed divisible by n, and Pr2 denotesP . From the
preceding remarks we shall have

Theorem VIII. The expression (9) for neurons of the cyclic set of a net N

together with certain TPE expressing the actions of other neurons in terms of
them, constitute a solution of N .

Consider now the question of the realizability of a set of Si. A first
necessary condition, demonstrable by an easy induction, is that

(z2)z1 . p1(z2) ≡ p2(z2) . → . S i ≡ S i

®
p1
p2

´
(10)

should be true, with similar statements for the other free p in S i: i.e.,
no nervous net can take account of future peripheral afferents. Any S i

satisfying this requirement can be replaced by an equipollent S of the form

(Ef )(z2)z1(z3)zzp : f εPrmi

: f (z1, z2, z3) = 1 . ≡ . pz3(z2)
(11)

where zzp denotes p, by defining

Prmi = f̂ [(z1)(z2)z1(z3)zzp : . f (z1, z2, z3) = 0.v.f (z1, z2, z3)
= 1 : f (z1, z2, z3) = 1 . ≡ . pz3(z2) :→: S i].
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Consider now these series of classes ai, for which

Ni(t) :≡ : (Eφ)(x)t(m)q : φεαi : Nm(x) . ≡ .φ(t, x,m) = 1.

[i = q + 1, . . . ,M ]
(12)

holds for some net. These will be called prehensible classes. Let us define the
Boolean ring generated by a class of classes κ as the aggregate of the classes
which can be formed from members of κ by repeated application of the
logical operations; i.e., we put

R(κ) = p‘λ̂[(α,β) : αεκ

→ αελ : α,βελ. → .− α,α.β,αvβελ].

We shall also define

R(κ). = .R(κ)− ι‘p‘− “κ,

Re(κ) = p‘λ̂[(α,β) : αεκ→ αελ. → .− α,α.β,αvβ, S“αελ]

Re(κ) = Re(κ)− ι‘p‘− “κ,

and
σ(ψ, t) = φ̂[(m).φ(t+ 1, t,m) = ψ(m)].

The class Re(κ) is formed from κ in analogy with R(κ), but by repeated
application not only of the logical operations but also of that which
replaces a class of properties P ε α by S (P ) εS “α. We shall then have the

Lemma
Pr1(p1, p2, . . . , pm, z1) is a TPE if and only if

(z1)(p1, . . . , pm) (Epm+1) : pm+1 εRe({p1, p2, . . . , pm})

pm+1(z1) ≡ Pr1(p1, p2, . . . , pm, z1)
(13)

is true; and it is a TPE not involving ‘S’ if and only if this holds when ‘Re’
is replaced by ‘R’, and we then obtain

Theorem IX. A series of classes α1,α2, . . .αs is a series of prehensible classes
if and only if

(Em)(En) (p)n(i) (ψ) : . (x)mψ(x) = 0 vψ(x) = 1 :→ : (Eβ)

(Ey)m.ψ(y) = 0 .β εR[γ̂((Ei).γ = αi)] .v. (x)m.

ψ(x) = 0 .β εR[γ̂((Ei) . γ = αi)] : (t)(φ) : φ εαi.

σ(φ, nt+ p) . → . (Ef) .f ε β . (w)m(x)t− 1.

φ(n(t+ 1) + p, nx+ p, w) = f(nt+ p, nx+ p, w).

(14)
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The proof here follows directly from the lemma. The condition is
necessary, since every net for which an expression of the form (4) can be
written obviously verifies it, the ψ’s being the characteristic functions of
the Sα and the β for each ψ being the class whose designation has the form
∏
iεα

Pri
∏

jεβα
Prj , wherePrk, denotesαk for all k. Conversely, wemaywrite

an expression of the form (4) for a net N fulfilling prehensible classes
satisfying (14) by putting for thePrα Pr denoting theψ’s, and aPr , written
in the analogue for classes of the disjunctive normal form, and denoting the
α corresponding to that ψ, conjoined to it. Since every S of the form (4) is
clearly realizable, we have the theorem.

It is of some interest to consider the extent to which we can by
knowledge of the present determine the whole past of various special nets:
i.e., when we may construct a net the firing of the cyclic of whose neurons
requires the peripheral afferents to have had a set of past values specified by
given functions φi. In this case the classes αi of the last theorem reduced to
unit classes; and the condition may be transformed into

(Em,n) (p)n(i, ψ) (Ej) : . (x)m : ψ(x) = 0 .v.ψ(x) = 1 :

φi ε σ(ψ, nt+ p) :→ : (w)m(x)t− 1 .φi(n(t+ 1)

+ p, nx+ p, w) = φj(nt+ p, nx+ p , w) : .

(u, v) (w)m.φi(n(u+ 1) + p, nu+ p, w)

= φi(n(v + 1) + p, nv + p, w).

On account of limitations of space, we have presented the above
argument very sketchily; we propose to expand it and certain of its
implications in a further publication.

The condition of the last theorem is fairly simply in principle, though
not in detail; its application to practical cases would, however, require
the exploration of some 22n classes of functions, namely the members of
R({α1, . . . ,αs}). Since each of these is a possible β of Theorem 9, this
result cannot be sharpened. But we may obtain a sufficient condition for
the realizability of an S which is very easily applicable and probably covers
most practical purposes. This is given by

Theorem X.
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Let us define a set K of S by the following recursion:

1. Any TPE and any TPE whose arguments have been replaced by
members of K belong to K ;

2. IfPr1(z1) is amember of K , then (z2)z1 .Pr1(z2), (Ez2)z1 .Pr1(z2),
and Cmn(z1) . s belong to it, where Cmn denotes the property of be-
ing congruent tommodulo n,m < n.

3. The set K has no further members.

Then every member ofK is realizable. For, if Pr1(z1) is realizable, nervous
nets for which:

Ni(z1). ≡ .Pr1(z1). SN i(z1)
Ni(z1). ≡ .Pr1(z1) v SN i(z1)

are the expressions of equation (4), realize (z2)z1 .Pr1(z2) and
(Ez2)z1 .Pr1(z2) respectively; and a simple circuit, c1, c2, . . . , cn, of n
links, each sufficient to excite the next, gives an expression

Nm(z1) . ≡ .N 1(0) .Cmn

for the last form. By induction we derive the theorem.
Onemore thing is to be remarked in conclusion. It is easily shown: first,

that every net, if furnished with a tape, scanners connected to afferents, B
Here McCulloch and Pitts
attempt to relate their logical
calculus model to Turing
machines.

and
suitable efferents to perform the necessary motor-operations, can compute
only such numbers as can a Turing machine; second, that each of the
latter numbers can be computed by such a net; and that nets with circles
can be computed by such a net; and that nets with circles can compute,
without scanners and a tape, some of the numbers the machine can, but no
others, and not all of them. This is of interest as affording a psychological
justification of the Turing definition of computability and its equivalents,
Church’s λ—definability and Kleene’s primitive recursiveness: If any
number can be computed by an organism, it is computable by these
definitions, and conversely.

IV. Consequences
Causality, which requires description of states and a law of necessary
connection relating them, has appeared in several forms in several sciences,
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but never, except in statistics, has it been as irreciprocal as in this theory.
Specification for any one time of afferent stimulation and of the activity of
all constituent neurons, each an “all-or-none” affair, determines the state.
Specification of the nervous net provides the law of necessary connection
whereby one can compute from the description of any state that of
the succeeding state, but the inclusion of disjunctive relations prevents
complete determination of the one before. Moreover, the regenerative
activity of constituent circles renders reference indefinite as to time past.
Thus our knowledge of the world, including ourselves, is incomplete as to
space and indefinite as to time. This ignorance, implicit in all our brains,
is the counterpart of the abstraction which renders our knowledge useful.
The role of brains in determining the epistemic relations of our theories to
our observations and of these to the facts is all too clear, for it is apparent
that every idea and every sensation is realized by activity within that net,
and by no such activity are the actual afferents fully determined.

There is no theory we may hold and no observation we can make that
will retain so much as its old defective reference to the facts if the net
be altered. Tinnitus, paraesthesias, hallucinations, delusions, confusions
and disorientations intervene. Thus empiry confirms that if our nets are
undefined, our facts are undefined, and to the “real” we can attribute
not so much as one quality or “form.” With determination of the net,
the unknowable object of knowledge, the “thing in itself,” ceases to be
unknowable.

To psychology, however defined, specification of the net would
contribute all that could be achieved in that field—even if the analysis were
pushed to ultimate psychic units or “psychons,” for a psychon can be no
less than the activity of a single neuron. Since that activity is inherently
propositional, all psychic events have an intentional, or “semiotic,”
character. The “all-or-none” law of these activities, and the conformity of
their relations to those of the logic of propositions, insure that the relations
of psychons are those of the two-valued logic of propositions. Thus in
psychology, introspective, behavioristic or physiological, the fundamental
relations are those of two-valued logic.

Hence arise constructional solutions of holistic problems involving
the differentiated continuum of sense awareness and the normative,
perfective and resolvent properties of perception and execution. From
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B
These diagrams are the first
logic gates. They inspired von
Neumann and subsequent
engineers in the design of
logic circuits for digital
computers.

Figure 1. The neuron ci is always marked with the numeral i upon the body of the cell, and the
corresponding action is denoted by ‘N ’ with i as subscript, as in the text:

(a) N2(t). ≡ .N1(t− 1)

(b) N3(t). ≡ .N1(t− 1) vN2(t− 1)

(c) N3(t). ≡ .N1(t− 1) . N2(t− 1)

(d) N3(t). ≡ .N1(t− 1) . ∼ N2(t− 1)

(e) N3(t) : ≡: N1(t− 1). v. ∼ N2(t− 3). ∼ N2(t− 2)

N4(t). ≡ .N2(t− 2) . N2(t− 1)

(f) N4(t) : ≡:∼ N1(t− 1) .N2(t− 1) vN3(t− 1). v .N1(t− 1).

N2(t− 1).N3(t− 1)

N4(t) : ≡:∼ N1(t− 2) .N2(t− 2) vN3(t− 2). v .N1(t− 2).

N2(t− 2).N3(t− 2)

(g) N3(t). ≡ .N2(t− 2). ∼ N1(t− 3)

(h) N2(t). ≡ .N1(t− 1).N1(t− 2)

(i) N3(t) : ≡: N2(t− 1). v .N1(t− 1).(Ex)t− 1.N1(x).N2(x).
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the irreciprocity of causality it follows that even if the net be known,
though we may predict future from present activities, we can deduce
neither afferent from central, nor central from efferent, nor past from
present activities—conclusions which are reinforced by the contradictory
testimony of eye-witnesses, by the difficulty of diagnosing differentially the
organically diseased, the hysteric and the malingerer, and by comparing
one’s own memories or recollections with his contemporaneous records.
Moreover, systems which so respond to the difference between afferents
to a regenerative net and certain activity within that net, as to reduce
the difference, exhibit purposive behavior; and organisms are known
to possess many such systems, subserving homeostasis, appetition and
attention. Thus both the formal and the final aspects of that activity
which we are wont to call mental are rigorously deduceable from present
neurophysiology. The psychiatrist may take comfort from the obvious
conclusion concerning causality—that, for prognosis, history is never
necessary. He can take little from the equally valid conclusion that his
observables are explicable only in terms of nervous activities which, until
recently, have been beyond his ken. The crux of this ignorance is that
inference from any sample of overt behavior to nervous nets is not unique,
whereas, of imaginable nets, only one in fact exists, and may, at any
moment, exhibit some unpredictable activity. Certainly for the psychiatrist
it is more to the point that in such systems “Mind” no longer “goes
more ghostly than a ghost.” Instead, diseased mentality can be understood
without loss of scope or rigor, in the scientific terms of neurophysiology.
For neurology, the theory sharpens the distinction between nets necessary
or merely sufficient for given activities, and so clarifies the relations
of disturbed structure to disturbed function. In its own domain the
difference between equivalent nets and nets equivalent in the narrow
sense indicates the appropriate use and importance of temporal studies of
nervous activity: and to mathematical biophysics the theory contributes a
tool for rigorous symbolic treatment of known nets and an easy method of
constructing hypothetical nets of required properties. E
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