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Brains  vs.  machines

“the brain doesn’t do things the 
way an engineer would”

“we needn’t be constrained by 
the way biology does things”

How to compute with 
nanoscale, low-power, stochastic 

circuit components?

Brain-like functions are more 
probabilistic in nature and use 
different data representations.

THE END OF MOORE’S LAW
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using analog computation instead, which degrades 
gracefully, the brain tolerates errors in its digital 
communication. This tolerance enables it to activate 
just 20 stochastic, single-lane, nanoscale devices 
per elementary operation (Figure 4), which is just 
20 fJ/op. Thus, 20 W suffices to convey spikes to 
and graded potentials from each of the brain’s 1015 
synapses once per second. The tradeoffs between 
analog and digital signal choices in communication 
and computation can be quantified using informa-
tion theory and thermodynamics.

For communication, using many error-prone, 
low-energy, channels—as brains do—is more 
energy-efficient than using a few pristine, high-
energy, channels—as computers do—because the 
information conveyed decreases only logarith-
mically as signal energy decreases. In the 1940s, 
Claude Shannon came up with a quantitative mea-
sure for information and derived the capacity of a 
communication channel in bits of information per 
second.5 Each signal the channel conveys carries a 
certain number (b) of information bits. This num-
ber grows logarithmically (b = ½log2

 (1 + E/kT )) 
with the ratio of signal energy (E) to noise energy 
(kT, for thermal noise). This expression was derived 
for a channel with additive, white Gaussian noise.  
The number of signals conveyed per second grows 
linearly with bandwidth (B). Their product gives 
the channel capacity (C = Bb). Notice that, for E 
≫ kT, the number of bits a signal carries drops by 
only one when its energy decreases a little more 
than fourfold—for example, it drops from two 
to one when signal energy decreases from 15kT to 
3kT. Hence, energy efficiency (b/(E + kT )) doubles, 
increasing from ⅛ to ¼ bits per kT. Note, how-
ever, that two of these low-energy channels are 
needed to match the high-energy channel’s capac-
ity, taking up more space. The complete space-
energy-bandwidth tradeoff has been analyzed for 

Figure 3. Signal choices for communication and 
computation. Communication moves operands and 
results around while computation combines operands 
to produce results. Analog computers (upper left) use 
analog signals to compute as well as to communicate, 
whereas digital computers (lower right) use digital 
signals to compute as well as to communicate. In 
contrast, the brain (lower left) uses analog signals to 
compute and digital signals to communicate. Using 
analog signals to communicate and digital signals to 
compute (upper right) hasn’t been explored. (Digital 
computer source: US Army, public domain.)
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Figure 1. Planar and 3D transistors. In a planar 
transistor (left), electrons (red) travel along one side of 
a piece of silicon, from source (brown) to drain (brown). 
Their flow is controlled by voltage applied to the gate 
(black), which is insulated from the channel by a thin 
layer of silicon-dioxide (medium gray). In a 3D transistor 
(right), electrons travel along three sides of a “fin” 
protruding from the surface.
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Figure 2. Transistors per dollar. Manufacturing advances continue to shrink 
transistors’ dimensions over time (gate length given). Since 2014, however, a 
dollar no longer buys more transistors every year—or two—halting a half-century 
trend dubbed Moore’s law. (Source: the Linley Group, used with permission.)
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1. How to realize the potential of low-power, compact phase-
change memory (PCM) and Resistive RAM (RRAM) crossbar 
arrays for analog data storage?

2. How to compute holistically with large populations of neurons 
- i.e., with high-dimensional data representations?

Two questions



Adaptive Error-Correcting Codes for Analog 
Data Storage in PCM/RRAM

encode decode

source channel receiver
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 493 

Figure 1: Illustration of Coding Strategies. The dimensionality of the signal is represented by 494 

the size of the bar. (a) Joint Coding. A k dimensional source, Sk, is encoded with a function F into 495 

an m dimensional representation, Vm. This is stored into analog devices and later read as the 496 

resistances Rm. The characteristics P(R|V) are determined by a combination of the dynamics of 497 

both the memory elements and control circuitry. The resistances are then decoded with the 498 

function G into a reconstructed source signal (Ŝk). (b) Separate Coding. Each encoding and 499 

decoding step is broken into separate source and channel procedures (Fsrc, Fch, Gch, and Gsrc, 500 

respectively). In discrete systems, source coding is usually applied in software (such as JPEG for 501 

images), and channel coding is applied in an on-chip memory controller. Such schemes can be 502 

optimal, but require asymptotically large blocklength to be so (k and m go to infinity, while k/m 503 

stays constant).  504 

 505 

 506 

Figure 2: Device Operation. (a)  Illustration of the pulsing scheme. Between each measurement, 507 

the cell is consistently “RESET” into the high resistance state via a short current pulse that melts 508 

the region above the bottom electrode (BE) and quickly cools to form a resistive amorphous cap 509 

(left). The cell is then “Partial SET” to a lower resistance with a long wordline (VWL) current pulse 510 

that anneals the amorphous cap region (second from the left). Larger current pulses (larger VWL) 511 



Analog memory as a noisy channel

P(R|V) determines capacity
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create smaller amorphous caps (far right) and thus yield lower resistances. (b) Circuit diagram of 512 

the 10x10 PCM memory array. Devices in the array are individually addressed by applying 513 

voltage VWL to the gate of the access transistor. PCM resistance is modulated by current flow 514 

whose magnitude is controlled via applying a large bitline voltage (VBL=3V) and pulsing the 515 

wordline. (C) I-V diagram showing the relationship (red curve) between VWL and current flowing 516 

through the device. Larger VWL create larger currents through the device.   517 

 518 

 519 
Figure 3: Measuring P(R|V). (a) Plot of the data collected for 100 different values of voltage 520 

pulse VWL for each of the seven different devices (each shown in a different color). Rather than 521 

plotting the 84,000 raw data points collected, we instead plot filled in curves where the top and 522 

bottom of each curve are +/- one standard deviation of R, respectively This gives a better sense 523 

of where most of the raw data is concentrated for each of the seven devices. Values of VWL 524 

between those collected (and the corresponding +/- standard deviations) are linearly interpolated. 525 

This un-normalized data yields a capacity of 1.54bits. Notice that the different devices exhibit 526 

qualitatively similar behavior but with slightly offset RESET resistances and slopes of annealing. 527 

(b) The same as in (a), but now with normalized RESET resistances (achievable via a simple 528 

single-pulse memory controller). This normalized data yields a capacity of 2.08 bits. (c) Heat map 529 

of the conditional distribution, P(R|VWL), estimated using Gaussian KDE and linear interpolation 530 

on the normalized data points.  531 

 532 

P(R|V)	for	seven	devices	on	a	PCM	array

2.1 bits
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 533 
Figure 4: Calculating Channel Capacity. (a) Capacity achieving input distribution, P(VWL), and 534 

corresponding output distribution, P(R|VWL). The optimal distribution contains as many input 535 

states as possible while minimizing overlap, resulting in 13 input states (additional input states 536 

beyond this can be used, but they do not increase the capacity). Note that even though the input 537 

distribution is over a finite number of states, the output distribution covers the full analog range of 538 

R. (b) Discrete capacity as a function of the number of read and write states. Limited by the 539 

number of write states, capacity increases with the number of read states due to the creation of 540 

‘soft information’. For more than 13 write states, the discrete capacity asymptotes to the analog 541 

capacity as the number of read states increases. Thus, error correcting codes that utilize analog 542 

circuits and the actual cell resistance values (such as those in an artificial neural network) can 543 

achieve the highest possible rates. 544 

 545 

 546 

Figure 5: Optimal joint coding of a Gaussian source. (a) Samples, S, distributed according to 547 

a Gaussian (blue distribution, top) are mapped through the learned encoding function (red line). 548 

For reference, a linear mapping is shown with a dashed line. This encoding transforms the 549 

Gaussian distribution into a highly non-Gaussian distribution over VWL (red distribution, right). 550 
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Fig. 5 DD - ISPP Scheme (a) Flow chart showing how to use DD-ISPP to fine

tune the resistance into acceptance range using incremental step RESET pulse

train and incremental step SET pulse train (b) Table: SET and RESET

incremental pulse train parameters used in DD-ISPP. (c) -(d) Example writing

with DD � ISPP showing the over-programming can be fixed by programming in

the opposite direction, and starting from minimal voltage when changing the

direction can minimize programming across the range and thus save energy. (c)

write pulse train waveform (d) measured resistance as a function of pulse number.
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DD-ISPP Programming Conditions

RESET SET

VWL Start (V) 2.5 0.5 
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Pulse Width (ns) 100 50 

(c)

Fig. 1 Diagram of the autoencoder architecture. The input image, X, is transformed through the

encoding neural network, F, into a set of target write resistances, RT. These resistances are then

written to the device array (purple circles). The devices are then read, yielding measured resistances

RM. RM are passed through the decoding neural network, G, yielding the reconstructed image , ��.
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Fig. 4 Analog programmable capability of RRAM 

cell (a) Typical I-V curves of one cell in RRAM 

array. Median set (red) and reset (blue) of 50 set 

(VWL = 1.2 V, VSL = 0 V ) /reset (VWL = 4.5 V, 

VBL = 0 V ) cycles. (b) Multiple resistance levels 

achieved by pulse RESET with different VWL

(Pulse Width = 100 ns, VSL = 3.5  V, VBL = 0 V). 
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Fig. 3 The cross-section schematic of  

RRAM stack: Pt (30 nm) / HfOx (5 nm) 

/ TiN (50 nm). SiN : passivation layer. 

Al : M7 layer
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Fig. 4 Analog programmable capabili
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Autoencoder	framework	for	multidimensional	signals	(images)

(Zheng, Zarcone, Paiton, Sohn, Wan, Olshausen & Wong, IEDM 2018)
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Effect	of	device	drift	on	image	reconstruction

17 dB



Computing with high-dimensional 
representations



Single neuron recording  ⇒  Single neuron thinking



Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)

The brain’s circuits are high-dimensional



Computing with high-dimensional vectors

Pentti Kanerva

Kanerva P  (2009)  Hyperdimensional Computing:  An Introduction to Computing in Distributed 
Representation with High-Dimensional Random Vectors.  Cognitive Computing, 1: 139-159.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural networks, 6(3), 
623-641.

Concepts, variables, attributes are represented 
as high-dimensional vectors (e.g., 10,000 bits)
Three fundamental operations:
• multiplication  (binding)
• addition          (combining)
• permutation    (sequencing)
Approximates a field



Factorization of shape and reflectance

reflectance shading (Adelson, 2000)



We approach this problem within the framework of 
High-Dimensional (HD) Computing:

- Visual scene attributes such as position, shape or 
color are represented as HD vectors.

- An image is encoded into a HD vector so that it 
expresses a product of these attributes.

- The problem of scene analysis amounts to 
factorizing an HD scene vector into its attributes.

- A scene containing multiple objects may be 
expressed as a superposition of products.



Factorization in HD

Let

Problem:  You are given b, what are x, y and z?

Solution:  Resonate
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1,000,000 combinations!  (n=100)





Operational capacity far exceeds gradient-based 
and other standard optimization methods

(Spencer Kent)



Operational capacity far exceeds gradient-based 
and other standard optimization methods

(Spencer Kent)



Search efficiency



=  horizontal position xi
=  vertical position yj
=  color channel c

Visual scene analysis via factorization of HD vectors
(Paxon Frady)

⊙ Shape



Visual scene analysis via factorization of HD vectors
(Paxon Frady)



Main points

• A common set of design principles may be used to understand 
brains and to engineer intelligent machines:
- probabilistic memory and computation
- holistic representation and computation

• Emerging memory (PCM/RRAM) may be most efficiently utilized 
as analog devices for storing analog-valued data.

• High-dimensional representation combined with an algebra of 
operators opens the door to combine and factorize data 
representations in new ways that enable us to solve problems in a 
manner that is not only tractable but also robust.


