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vs. machines

(Boahen 2017)

Brain-like functions are more How to compute with
probabilistic in nature and use nanoscale, low-power, stochastic
different data representations. circuit components!?
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Iwo questions

|. How to realize the potential of low-power, compact phase-
change memory (PCM) and Resistive RAM (RRAM) crossbar

arrays for analog data storage!

2. How to compute holistically with large populations of neurons
- i.e., with high-dimensional data representations!’



Adaptive Error-Correcting Codes for Analog
Data Storage in PCM/RRAM
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Analog memory as a noisy channel
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Separate Source-Channel Coding
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Joint Source-Channel Coding
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P(R|V) for seven devices on a PCM array
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Encoder (F) Channel P(R|V) Decoder (G)
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Autoencoder framework for multidimensional signals (images)
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[nput neural
image network
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(Zheng, Zarcone, Paiton, Sohn,Wan, Olshausen & VWong, IEDM 201 8)
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Effect of device drift on image reconstruction
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Computing with high-dimensional
representations



Single neuron recording = Single neuron thinking
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Abstract. The problem discussed is the relationship between the firing of single neurons in sensory
pathways and subjectively experienced sensations. The conclusions are formulated as the following
five dogmas:
1. To understand nervous function one needs to look at interactions at a cellular level, rather than
either a more macroscopic or microscopic level, because behaviour depends upon the organized
pattern of these intercellular interactions.
2. The sensory system is organized to achieve as complete a representation of the sensory stimulus
as possible with the minimum number of active neurons.
3. Trigger features of sensory neurons are matched to redundant patterns of stimulation by
experience as well as by developmental processes.
4. Perception corresponds to the activity of a small selection from the very numerous high-level
neurons, each of which corresponds to a pattern of external events of the order of complexity of
the events symbolized by a word.
5. High impulse frequency in such neurons corresponds to high certainty that the trigger feature is
present.

The development of the concepts leading up to these speculative dogmas, their experimental
basis, and some of their limitations are discussed.




Barlow (1981)

The brain’s circuits are high-dimensional

LGN
afferents



Computing with high-dimensional vectors

Concepts, variables, attributes are represented
as high-dimensional vectors (e.g., 10,000 bits)

Three fundamental operations:
_ multiplication (binding)
rentti Ranerva . addition (combining)

permutation (sequencing)

Approximates a field

Kanerva P (2009) Hyperdimensional Computing: An Introduction to Computing in Distributed
Representation with High-Dimensional Random Vectors. Cognitive Computing, |: 139-159.

Plate, T.A. (1995). Holographic reduced representations. IEEE Transactions on Neural networks, 6(3),
623-641.



Factorization of shape and reflectance

reflectance shading (Adelson, 2000)



We approach this problem within the framework of
High-Dimensional (HD) Computing:

- Visual scene attributes such as position, shape or
color are represented as HD vectors.

- An image is encoded into a HD vector so that it
expresses a product of these attributes.

- The problem of scene analysis amounts to
factorizing an HD scene vector into its attributes.

- A scene containing multiple objects may be
expressed as a superposition of products.



Factorization in HD
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Consider the following energy function
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Consider the following energy function

1,000,000 combinations! (n=100)
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Nearest-neighbor decoding accuracy
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Operational capacity far exceeds gradient-based

and other standard optimization methods
(Spencer Kent)
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Operational capacity far exceeds gradient-based

and other standard optimization methods
(Spencer Kent)
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Mean iterations
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Visual scene analysis via factorization of HD vectors
(Paxon Frady)
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Visual scene analysis via factorization of HD vectors
(Paxon Frady)
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Main points

- A common set of design principles may be used to understand
brains and to engineer intelligent machines:

- probabilistic memory and computation

- holistic representation and computation

Emerging memory (PCM/RRAM) may be most efficiently utilized
as analog devices for storing analog-valued data.

High-dimensional representation combined with an algebra of
operators opens the door to combine and factorize data
representations in new ways that enable us to solve problems in a
manner that is not only tractable but also robust.



