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What Is the Goal of Sensory Coding?

David J. Field
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A number of recent attempts have been made to describe early sensory
coding in terms of a general information processing strategy. In this
paper, two strategies are contrasted. Both strategies take advantage of
the redundancy in the environment to produce more effective repre-
sentations. The first is described as a “compact” coding scheme. A
compact code performs a transform that allows the input to be repre-
sented with a reduced number of vectors (cells) with minimal RMS
error. This approach has recently become popular in the neural net-
work literature and is related to a process called Principal Components
Analysis (PCA). A number of recent papers have suggested that the op-
timal “compact” code for representing natural scenes will have units
with receptive field profiles much like those found in the retina and
primary visual cortex. However, in this paper, it is proposed that com-
pact coding schemes are insufficient to account for the receptive field
properties of cells in the mammalian visual pathway. In contrast, it is
proposed that the visual system is near to optimal in representing natu-
ral scenes only if optimality is defined in terms of “sparse distributed”
coding. In a sparse distributed code, all cells in the code have an equal
response probability across the class of images but have a low response
probability for any single image. In such a code, the dimensionality is
not reduced. Rather, the redundancy of the input is transformed into
the redundancy of the firing pattern of cells. It is proposed that the sig-
nature for a sparse code is found in the fourth moment of the response
distribution (i.e., the kurtosis). In measurements with 55 calibrated nat-
ural scenes, the kurtosis was found to peak when the bandwidths of
the visual code matched those of cells in the mammalian visual cortex.
Codes resembling “wavelet transforms” are proposed to be effective
because the response histograms of such codes are sparse (i.e., show
high kurtosis) when presented with natural scenes. It is proposed that
the structure of the image that allows sparse coding is found in the
phase spectrum of the image. It is suggested that natural scenes, to
a first approximation, can be considered as a sum of self-similar local
functions (the inverse of a wavelet). Possible reasons for why sensory
systems would evolve toward sparse coding are presented.
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1 Introduction

Although we know a great deal about how sensory systems code in-
formation, there remains considerable debate regarding the goal of this
coding. In many studies, there is an implicit assumption that there is no
single goal. It is assumed that sensory systems solve a wide range of tasks
important to the animal and since the range of tasks varies widely, one
would not expect to see any common “theme” across the different coding
strategies. A second approach, which serves as the basis for the ideas
presented in this paper, proposes that it is possible to describe sensory
coding in terms of a general information processing strategy. By this tra-
dition, it is presumed that redundancy in different sensory environments
can be represented within a single framework and that the goal of sen-
sory coding is to transform the redundancy to provide some advantage
to later stages of processing. In this paper, two information processing
strategies are contrasted. Both of these approaches take advantage of the
redundancy in the input to produce more effective representations of the
environment. However, the two approaches achieve different goals and
depend on different forms of redundancy.

The first of these, which will be described as “compact coding,” has
gained considerable attention in the neural network literature and serves
as the basis of much of the work in image compression. This approach
suggests that the principal goal of visual coding is to reduce the redun-
dancy of the visual representation. Many of these ideas can be traced
backed to Barlow’s theories of redundancy reduction (e.g., Barlow 1961).
Recently, a number of studies have proposed that spatial coding by the
mammalian visual system is well described by codes that make use of
the correlations to reduce the redundancy of the sensory representation
(e.g., Atick and Redlich 1990, 1992: Atick 1992; Barlow and Foldiak 1989;
Daugman 1988, 1991; Linsker 1988; Foldiak 1990; Sanger 1989).

This approach to coding is illustrated in Figure 1A. In a compact
code, the goal is to represent all the likely inputs with a relatively small
number of vectors (e.g., cells) with minimal loss in the description of
the input. In such a code, the dimensionality of the representation is
reduced, resulting in a code where only a subset of the possible inputs
can be accurately represented. The code is effective when this subset
is capable of representing the probable inputs to the code. In the next
section, we will see how this approach reduces redundancy.

The second approach suggests that the principal goal of sensory cod-
ing is to produce a sparse-distributed representation of the sensory input.
This approach has been specifically proposed with respect to visual code
and the representations of natural scenes (Field 1987, 1989, 1993; Zetzsche
1990). However, several authors have noted that codes that produce
sparse outputs may provide several advantages for representing sensory
information (e.g., Barlow 1972, 1985; Palm 1980; Baum ef al. 1988). Un-
fortunately, in much of this work, the distinction between sparse and



Sensory Coding o6l

A B
Compact Coding Spars(e:gilis;glbuted
= =
£ £
g $
g g
ST T T
Y
Represents data with Represents data with
minimum number of units minimum number of

active units

Figure 1: Two methods of taking advantage of redundancy in a sensory envi-
ronment. In the compact coding approach (A), the code transforms the vector
space to allow the data to be represented by a smaller number of vectors with
only minimal loss in the representation (i.e., dimensionality is reduced). In a
sparse coding scheme (B), the code transforms the vector space to allow the
input to be represented with a minimum number of active cells. In a sparse
coding scheme, the dimensionality is not reduced. Rather, the redundancy in
the input is transformed into the redundancy in the firing rate of the cells (i.e.,
the response histogram) to produce a code where the response probability for
any particular cell is relatively low.

compact codes has not been clear. Therefore, in this paper, much of the
discussion will be devoted to the differences and requirements for each
type of coding.

In a sparse-distributed code, the dimensionality of the representation
is maintained (the number of cells remains roughly constant and may
even increase). However, the number of cells responding to any partic-
ular instance of the input is minimized. Over the population of likely
inputs, every cell has the same probability of producing a response (i.e.,
distributed) but that probability is low for any given cell (i.e., sparse).
In sparse-distributed coding, the goal is to obtain a code where only a
few cells respond to any given input. However, across the population of
images the information is distributed across all of the cells. As we will
see in the next section, this coding scheme does not reduce redundancy.



562 David J. Field

Rather, high-order redundancy is transformed into redundancy of the fir-
ing patterns of the cells (i.e., the response histograms) as was proposed
previously (Field 1987). By this approach, the goal of the coding is to
maximize the redundancy of the response histograms by minimizing the
statistical dependencies between units.

In the following sections, these two approaches will be analyzed and
contrasted. We will begin by looking at the type of redundancy required
for producing a compact code and discuss the relations between this code
and Principal Components Analysis (PCA). We will then look at the type
of redundancy and the type of transform required for a sparse code. This
will be followed by an experiment that models the response of visual
neurons to natural scenes. Throughout this paper, we will concentrate
on the response properties of cells in the mammalian visual system and
the statistical relations found in the natural environment. However, the
general ideas can be applied to any sensory system and any sensory
environment.

2 State Space

One effective method for describing redundancy in a data set is to con-
sider the “state space” of possible inputs. The state space (sometimes
called vector space or phase space) describes the space of all possible
states. This approach provides a useful means of showing how differ-
ent coding schemes take advantage of the various forms of redundancy
present in a population of inputs. Although the notion of state space
has proved popular in descriptions of chaotic interactions and learning
in neural networks (e.g., Churchland and Sejnowski 1992 for an intro-
duction), it is not widely discussed in theories of visual coding.

To describe the state space of an image set, one can use the pixel am-
plitudes to represent the coordinate axes of the space. For any n-pixel
image, one requires an n-dimensional space to represent the set of all
possible images. Every possible image (e.g., a particular face, tree, etc.)
is represented in terms of its unique location in the space. For example,
white noise patterns (i.e., patterns with random pixel intensities) repre-
sent random locations in that n-dimensional space. Therefore, if we let
the space become filled with examples of such white noise patterns, then
all regions of the space would be filled equally—that is, the probability
density will be uniform throughout the state space.

However, most naturally occurring phenomena are not random. Any
redundancy that occurs in a data population implies that the population
does not fill the state space uniformly. Natural scenes, for example,
are statistically very different from white noise patterns and we would
therefore not expect the state space of natural scenes to have the same
probability density. Consider the case of a 256x256 pixel image. The
state space of all possible images at this resolution requires a 65,536-
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dimensional space where the amplitudes of each of the pixels represent
the axes of the space. As one can imagine, the probability of seeing
something resembling a natural scene when presented with white noise
patterns is extremely low. This implies that in the state space of all
possible 256 x 256 images, natural scenes occupy an extremely small area
of the space.

To develop an understanding of the functional properties of the mam-
malian visual system, a number of recent studies have proposed that one
must understand the statistical regularity of the mammalian visual envi-
ronment and its relation to the visual code (e.g., Field 1987, 1989, 1993;
Atick and Redlich 1990, 1992; Bialek et al. 1991; Eckert and Buchsbaum
1993; Hancock et al. 1992; van Hateren 1992; Kersten 1987). In terms of
the state space, every statistical regularity that one finds in the visual
environment provides a clue about the location and shape describing the
probability density of natural scenes within the state space. Our visual
environment is highly structured. The physics of how objects and sur-
faces reflect light forces the probability density into highly constrained
forms. We will see that much of the debate about the goal of visual
coding depends on the particular shape that is produced with data from
the sensory system’s typical environment. It will be argued that the state
space describing the probability density of natural scenes is highly pre-
dictable but does not have the shape that is widely presumed.

Similarly, the spatial response properties of a cell (e.g., the receptive
field) can also be described in terms of locations in the state space that
will produce a response. For example, a cell with a linear response can be
represented by a vector extending from the origin of the state space in a
direction that depends uniquely on the particular receptive field profile.
Every distinguishable receptive field profile is represented in terms of
a unique direction in the state space. Thus, an array of cells can be
considered as an array of vectors each pointing to unique locations in
the state space.

If the local amplitudes of a waveform (e.g., the pixels) represent the
coordinate axes of the state space, then an ortho-normal transform (e.g.,
a Fourier transform) can be represented by a rotation and/or translation
of the coordinate axes.! This concept of treating a transform as a rotation
of the coordinate axes will prove important in the discussions below.
Ortho-normal transforms represent the special class of transforms where
the vectors remain of normal length

Vil =1
and the vectors remain orthogonal.

ViV, =0

1Technically, an ortho-normal transform performs an “isometric” transform on the
state space (i.e., it is form preserving).
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It is unlikely that the visual system’s transform is either completely
orthogonal or normal, but this will not affect the main points of the
discussion presented in this paper. To a first approximation, a sensory
code can be thought of as rotation of the coordinate axes of the state
space. The response properties of any particular cell (e.g., the receptive
field) describe the direction of the vector in the state space. The collection
of cells mapping out the visual field forms an array of vectors mapping
out the state space.

To understand the goal of sensory coding, it is proposed that one
must determine the relation between the directions of the vectors (i.e., the
response properties of the cells) and the “state space” of typical inputs for
that sensory system. Throughout this paper, terms such as “the form of
the state space” or “the state space of input” will be used. This represents
a shorthand for “the regions within the state space where images have a
relatively high probability.” The state space always represents the space
of all possible images. However, “state space of natural scenes” will refer
to the region within this space that describes where natural scenes are
likely to falil.

This study will investigate the relation between the spatial response
properties of some of the cells in the visual pathway (e.g., the vectors
described by the receptive field profiles) and the state space populated
by natural scenes. The redundancy in the environment can take several
forms. In the next sections, two forms of redundancy will be considered
and we will explore two types of transform that can take advantage of
this redundancy.

2.1 Correlations in State-Space. Let us consider a very simple ex-
ample where a data set consists of only two independent variables (e.g.,
the intensities of two neighboring pixels). Figure 2 shows an example
of the state space of a collection of two pixel images where the horizontal

Figure 2: Facing page. (a) An example of a two-dimensional state space. In
this example, we have assumed that the axes represent the intensities of two
pixels. The ellipse represents a population of probable inputs showing that
Pixel A and Pixel B are highly correlated. However, in this example, there is
little redundancy in the response histograms of the two pixels. Each shows a
gaussian distribution with a relatively large variance. The histogram of activity
for the two pixels is found by projecting the state space onto the two axes.
(b) The transform where the new basis functions are represented by a rotation
of the coordinate axes. In this new coordinate system, most of the variance
in the data can be represented with only a single coefficient (A). Removing
B’ from the code produces only minimal loss. This rotation of the coordinate
system to allow the vectors to be aligned with the principal axes of the data is
what is achieved with the process called Principal Component Analysis (PCA).
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axis represents the intensity of Pixel A and the vertical axis represents
the intensity of Pixel B. Any two-pixel image is represented as a unique
point in the two-dimensional state space.

Figure 2a provides an example of one form of redundancy. In this
case, the population of images produces a correlation in the outputs of the
two pixels. Although the pixels are correlated, each pixel is contributing
equal information about the image. In this case, it has been assumed that
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the response behavior is normally distributed about the two axes. The
histogram of activity (i.e., the probability distribution function) for the
two pixels is found by projecting the state space onto the two axes. In
this case, the activity of each pixel is normally distributed and the two
have equal variance.

It is possible to transform the coordinate system to take advantage
of the redundancy. Figure 2b shows the transform where the new basis
functions are represented by a simple rotation of the coordinate axes
where A" = A + B and B' = A — B. To keep the basis vectors of normal
length, the transform is

’ 1 1
Bl 5] @
V2 o2

In this new coordinate system, most of the variance in the data can
be represented with only a single coefficient (A’). Removing B’ from the
code produces only minimal loss in the description of the input. This ro-
tation of the coordinate system to allow the vectors to be aligned with the
principal axes of the data is what is achieved with a process called Princi-
pal Component Analysis (PCA)—sometimes called the Karhounen—Loeve
transform. Principal component analysis computes the eigenvalues of the
covariance matrix (e.g., the covariance of the pixels in an image). The
corresponding eigenvectors represent a hierarchy of orthogonal coeffi-
cients where the highest valued vectors account for the greatest part of
the covariance.

By using only these highest valued vectors, the state space can be
represented with a subset of the vectors and only minimal loss in the
representation as measured in RMS error. As shown in Figure 2, the vari-
ance in A’ has increased and the variance in B’ has decreased markedly.
Now, most of the variance of the input is coded in A’. In general, by
removing those vectors with low variance, we end up with a state space
that is “more packed.” Thus, the new state space has less redundancy.
Redundancy reduction is achieved by removing regions of the state space
where the probability density is low. One can either remove low vari-
ance vectors from the representation or reduce the range that a vector
can cover (i.e., reduce the dynamic range of the basis vector).

If we think of the data as forming an ellipse then PCA provides a
method of finding the axes of the ellipse. Of course, this two-point trans-
form is a rather restricted example. If one hopes to model the redundancy
of natural scenes then one needs a high-dimensional space to describe
the possible states. An n-pixel image requires an n-dimensional state
space. Although the different forms of redundancy can become quite
complex, it is not necessarily difficult to describe. It is possible to gener-
alize the ellipse shown in Figure 3 to high dimensions where the region
of high-probability images (i.e., high density) is described by

axg +bxi ek tddfexdd 4 <=k (2.2)
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Figure 3: Ellipse and two filtered images. Examples of two images created by
multiplying the spectrum of white noise (flat spectrum) by 1 /f. With images
like this, all the redundancy is captured in the Fourier amplitude spectrum. The
state space of images created in this fashion form a high-dimensional ellipse as
described in equation 2.2. The axes of the ellipse are aligned with the vectors
in the Fourier transform. Thus, the “principal components” and the vectors of
Fourier transform are equivalent.

where
a>b>c>d>e---

and x1,xs,X3... represent the axes of the ellipsoid. Whatever direction
the axes are pointing, PCA can use the correlations in the data to find
the directions of these axes and produce the vectors that correspond
to the axes of the ellipsoid. The advantage of these particular vectors
is that they provide a means of compressing image data with minimal
RMS error. Just as the axes of the ellipse are ordered in equation 2.2, the
eigenvectors are ordered in a sequence where the first few vectors account



568 David J. Field

for the highest proportion of the variance. If the goal is to compress an
n-pixel image set using only m vectors where m < 1, then the principal
components (i.e., the principal axes) represent the optimal vectors for
describing the data. As will be suggested in the next section, the state
space representing natural scenes may not be well described by a high-
dimensional ellipse. Nevertheless, no matter what the actual form of the
state space, if the goal is to transmit a data set with a reduced number
of vectors and with minimal RMS error, then PCA provides a means of
finding the optimal set of vectors.2

2.2 Principal Components and the Amplitude Spectra of Natural
Scenes. An interesting and important idea involves PCA when the statis-
tics of a data set are stationary. Stationarity implies that over the popu-
lation of images in the data set (e.g., all natural scenes), the statistics at
one location are no different than at any other location.

Across all images P(x; | xi41,%i1,...) = P(x; | Xj11,Xj42,...) for all i
and j.

This is a fairly reasonable assumption with natural scenes since it im-
plies that there are no “special” locations in an image where the statistics
tend to be different (e.g., the camera does not have a preferred direction).
It should be noted that stationarity is not a description of the presence or
lack of local features in an image. Rather, stationarity implies that over
the population, all features have the same probability of occurring in one
location versus another.

When the statistics of an image set are stationary, the amplitudes of
the Fourier coefficients of the image must be uncorrelated (e.g., Field
1989). Indeed, any two filters that are orthogonal over translation:

g(x) - h(x —x0) =0 for all x

will have uncorrelated outputs in the presence of data with stationary
statistics (Field 1993). Since this holds for the Fourier coefficients, the
amplitudes of the Fourier coefficients will be uncorrelated.

This means that when the statistics of a data set are stationary then all
the redundancy reflected in the correlations between pixels is captured by
the amplitude spectra of the data. This should not be surprising since the
Fourier transform of the autocorrelation function is equal to the power
spectrum. Therefore, with stationary statistics, the amplitude spectrum
describes the principal axes (i.e., the principal components) of the data
in the state space (Pratt 1978). With stationary data, the phase spectra of
the data are irrelevant to the directions of the principal axes.

As noted previously (Field 1987), an image that is scale invariant will
have a well-ordered amplitude spectrum. For a two-dimensional image,

’It should be noted that PCA finds only the optimal linear solution. It is always
possible that for a given data set there exists a nonlinear transform that will provide
better compression than the vectors provided by PCA.
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the amplitudes will fall inversely with frequency (ie., a 1/f spectrum).
Natural scenes have been shown to have spectra that fall as roughly 1/f
(Burton and Moorhead 1987; Field 1987, 1993; Tolhurst et al. 1992). If
we accept that the statistics of natural images are stationary, then the 1/f
amplitude spectrum provides a complete description of the correlations
in natural scenes. The amplitude spectrum certainly does not provide
a complete description of the redundancy in natural scenes, but it does
describe the relative amplitudes of the principal axes.

We can ask what an image would look like if all the redundancy
in the image set was described by a 1/f amplitude spectrum. Or in
terms of the state space, we can ask what images would look like if the
probability density was described by a high-dimensional ellipsoid where
the principal axes of the ellipsoid are the Fourier transform. Figure 3
shows examples of two such images. They are created by multiplying the
spectrum of white noise (flat spectrum) by 1/f. Although these images
have amplitude spectra similar to natural scenes (and therefore the same
principal components), they clearly do not look like real scenes. They
do not contain any of the local structure like edges and lines found in
the natural environment. As proposed in the next section, images that
have such local structure are not described well by a high-dimensional
ellipsoid.

A number of recent studies have discussed the similarities between
the principal components of natural scenes and the receptive fields of
cells in the visual pathway (Bossomaier and Snyder 1986; Atick and
Redlich 1990, 1992; Atick 1992; Hancock et al. 1992; Baddeley and Han-
cock 1991; MacKay and Miller 1990; Derrico and Buchsbaum 1991). And
there have been a number of studies that have shown that under the right
constraints, units in competitive networks can develop large oriented
receptive fields (e.g., Lehky and Sejnowski 1990; Linsker 1988; Sanger
1989). Indeed, it has been noted that networks like Linsker’s work off
the induced correlations caused by the overlapping receptive fields in the
network and the network produces results similar to the principal com-
ponents (MacKay and Miller 1990). And it has been noted that Hebbian
learning can, under the right conditions, find the principal components
(Oja 1982; Foldiak 1989; Sanger 1989).

This appears to pose a dilemma. If the principal components of im-
ages with stationary statistics are equivalent to the Fourier transform,
shouldn’t the derived receptive field profiles of the appropriate Hebbian
network look like the Fourier transform if presented with natural scenes?
Not necessarily. The two-dimensional Fourier transform of natural scenes
shows considerable symmetry. The amplitude spectra of natural scenes
fall as approximately 1/f at all orientations. Therefore, at any frequency
there exists a range of orientations that are likely to have similar ampli-
tude. When a number of Fourier coefficients have the same amplitude,
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there will exist a wide range of linear combinations that will account for
equal amounts of the covariance (i.e., the solution is degenerate). There-
fore, linear combinations of these equivariant vectors will also account
for equal amounts of the covariance.

Recently, Baddeley and Hancock (1991) and Hancock et al. (1992) cal-
culated the principal components of a number of natural scenes directly.
When gaussian windowed, the first few coefficients do show some resem-
blance to cortical receptive fields—but this is expected since a gaussian-
windowed low-frequency sinusoid (the first Fourier coefficients with the
greatest amplitude) will produce the popular “Gabor function” shown
to provide good models of cortical receptive fields (e.g., Field and Tol-
hurst 1986). Past the first 3 or 4 Fourier coefficients, the receptive field
profiles no longer look like cortical receptive field profiles. Instead, the
profiles are substantially different from those found in the mammalian
visual system.

Figure 4B shows an example of the two-dimensional amplitude spec-
trum of a natural scene. On average, a ring of frequencies around the
origin will have the same amplitude. This produces degeneracy in the
set of possible solutions. The principal components can consist of any
linear combination of these frequencies. That is, an equivalent solution
for the principal components may consist of an ortho-normal transfor-
mation of these vectors. Figure 4C shows four spatial frequencies that
would be expected to account for equal amounts of the covariance in
natural scenes. The four lower “receptive fields” represent a rotation of
the other receptive fields. For a natural scene with a 1/f spectrum and
stationary statistics, the vectors in either 4C or 4D will serve equally well
as principal components. Thus, even if the statistics of the input are
stationary, the Fourier transform is not necessarily the only solution.

It is important to recognize that if the statistics of the input are sta-
tionary then there is no reason for Principal Components Analysis to
produce localized receptive fields. In Fourier terms, a function is local-
ized because the phases of the different frequencies are aligned at the
point where the function is localized. Cortical simple cells, for exam-
ple, have been shown to have a high degree of phase alignment at the
center of the receptive field (Field and Tolhurst 1986). The large low-
frequency receptive fields may contain only a few spectral components.
However, the small high-frequency receptive fields have relatively broad
bandwidths and hence have a large number of spectral components, all
aligned near the center of the receptive field. Randomizing the phases of
a localized function will distribute the energy across the image. Since the
covariance matrix does not capture the phases (if the statistics are station-
ary), Principal Components Analysis cannot produce localized receptive
fields.

If the primary constraints of the code are to represent the input with
reduced dimensionality, then the codes should not be capable of produc-
ing the small high-frequency orientation selective receptive fields. Atick



Sensory Coding 571

(A)

(B) ! Amplitude Spectrum

Amplitude

©

Py P P3 P4

(D)

Figure 4: An example of a scene (A) and its two-dimensional amplitude spec-
trum (B). For a population of images scenes with stationary statistics, the am-
plitude spectrum describes the principal components. However, in the two-
dimensional amplitude spectrum of natural scenes there is considerable sym-
metry with similar frequencies at different orientations likely to have the same
amplitude (C). This means that appropriate combinations of the Fourier coeffi-
cients with equal amplitude will account for equal amounts of the covariance.
(D) An example of a rotation of the Fourier vectors that should account for
equal amounts of the covariance. With stationary statistics, the phase of the
phase spectrum of the input is irrelevant to the principal components. Thus,
Principal Components Analysis (PCA) cannot result in localized receptive fields
without forcing constraints on the phase.

and Redlich (1990, 1992) have suggested that the spatial frequency tuning
of retinal ganglion cells is well matched to the combination of amplitude
spectra of natural scenes and high-frequency quantal limitations found
in the natural environment. This is an important finding with regards to
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the amplitude spectrum of the receptive field profile. However, a recep-
tive field will be localized only if its phase spectrum is aligned, so this
approach cannot explain why the receptive fields are localized. It has
been proposed that it is the phase spectrum of natural scenes that must
be considered if one is to account for the localized nature of receptive
fields (Field 1989, 1993). Indeed, although there are numerous reports
of networks that produce hidden units with oriented receptive fields, I
have found no published report of a network that can produce the small
localized receptive fields without specifically forcing these locality con-
straints on the network (e.g., forcing a small gaussian window). It has
even been suggested that competitive learning is, in general, inappro-
priate for producing the small high-frequency receptive fields (Webber
1991). The receptive field profiles of the hidden units are always the
same size as the window of the network.

In the next section it will be proposed that the principal components
of natural images do not describe the important forms of redundancy. To
summarize, PCA and compact coding have several problems in account-
ing for receptive field profiles of cells in the retina and primary visual
cortex.

1. If one accepts that the statistics of natural scenes are stationary,
then the principal components are dependent on only the amplitude
spectra of the input. The phase spectra of the inputs are irrelevant.

2. Because of the symmetry in the amplitude spectra of natural scenes,
the principal components are likely to have a degenerate solution.
The resulting “receptive fields” will consist of an unconstrained
collection of orientation components with random phase. This will
be most apparent at higher frequencies where there exists a wide
range of orientation components at each frequency.

3. A function is localized only when the phases of the Fourier co-
efficients are aligned. Thus, when the statistics are stationary, the
Principal Components Analysis will not produce localized receptive
fields because the phase spectrum is not constrained.

4. Since the principal components are not dependent on the phase
spectra of the input, the principal components will not reflect the
presence of local structure in the data.

In the next section, it will be proposed that the shape of the state space
describing natural scenes is not elliptical and this nonelliptical state space
provides a clue as to why the mammalian visual system represents spatial
data as it does. To account for receptive field profiles in primary visual
cortex, we consider a different theory regarding the goal of visual coding
and we consider a different form of redundancy found in natural scenes.

However, before discussing sparse coding techniques, it should be
noted that the PCA represents an important technique for reducing the
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number of vectors describing the input—when it is possible. For exam-
ple, in the color domain, it has been found that the first three principal
components can account for much of the variance in the spectra of nat-
urally occurring reflectances. This has led investigators to suggest that
the three cone types found in primate vision provide an efficient descrip-
tion of our chromatic environment (e.g., Buchsbaum and Gottschalk 1983;
Maloney 1986).

In general, the principal components can be used to determine which
dimensions of the state space are needed to represent the data. If a
reduced dimensionality is possible, the principal components will be able
to tell you that. However, once the dimensions have been decided, it is
proposed that other factors must be considered to determine the best
choice of vectors to describe that space.

2.3 State Spaces That Allow Sparse Coding. Consider a two-pixel
data set with redundancy like that shown in Figure 5. The data are
redundant since the state space is not filled uniformly. However, this
data set has some interesting properties. We can think of this data set as
a collection of two types of images: one set with pixels that have high
positive correlation and one set with high negative correlation.

For this data set, there will be no correlation between Pixel A and Pixel
B. Furthermore, there is no “high-order” redundancy since there are only
two vectors. This is an example of a type of second-order redundancy
that is not captured by correlations. However, the same transformation
performed as before (i.e., a rotation) produces a marked change in the
histograms of the basis functions A’ and B'. This particular data set al-
lows a “sparse” response output. Although the variance of each basis
function remains constant, the histogram describing the output of each
basis function has changed considerably. After the transformation, vec-
tor A’ is high or vector B’ is high but they are never high at the same
time. The histograms of each vector show a dramatic change. Relative to
a normal distribution, there is a higher probability of no response and a
higher probability of a high response, but a reduction in the probability
of a mid-level response.

This change in shape can be represented in terms of the kurtosis of the
distribution where the kurtosis is defined as the fourth moment according
to

K=1/n)"[(x —x)*/o* - 3 (2.3)

Figure 6 provides an example of distributions with various degrees
of kurtosis. In a sparse code, any given input can be described by only a
subset of cells, but that subset changes from input to input. Since only a
small number of vectors describe any given image, any particular vector
should have a high probability of no activity (when other vectors describe
the image) and a higher probability of a large response (when the vector
is part of the family of vectors describing the image). Thus, a sparse code
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Figure 5: As in Figure 2, this shows an example of the state space of a population
of two-pixel images. The data set are redundant since the state space is not filled
uniformly. However, with these data, there are no correlations in the data and,
therefore, there are no principal axes that can account for a major component
of the variance. In such a data set, there is no way to take advantage of the
redundancy by reducing the dimensionality. The right of the figure shows how
the response distribution changes if the vector space is transformed to allow
the vectors to be aligned with the axes of the data. In this case, each of the
vectors maintains the same variance. However, the shape of the distribution is
no longer gaussian (high entropy). Instead, the response distribution shows a
high degree of kurtosis (lower entropy-higher redundancy).
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Kurtosis

Figure 6: Examples of three levels of kurtosis. Each of the distributions has the
same variance. A gaussian distribution has minimal redundancy (highest en-
tropy) for a fixed variance. The higher the kurtosis, the higher the redundancy.
With high kurtosis, there is a higher probability of a low response or a high
response with a reduced probability of a mid-level response.

should have response distributions with high kurtosis. Although kurtosis
appears to capture this property of a distribution with both high and low
variances, one should not presume that kurtosis necessarily represents
the optimal measure for defining a sparse code. At this time, we consider
it a “useful measure.” We will return to this point later.

As we move to higher dimensions (e.g., images with a larger number
of pixels), we might consider the case where only one basis vector is
active at a time (e.g., vector 1 or vector 2 or vector 3 ...):

axpUax, UaxzUaxy. .. (2.4)

In this case, each image can be described by a single vector and the
number of images equals the number of vectors. However, this is a
rather extreme case and is certainly an unreasonable description of most
data sets, especially natural scenes.

When we go to higher dimensions, there exist a wide range of possible
shapes that allow sparse coding. Overall, the shape must require a large
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set of vectors to describe entire population of possible inputs, but require
a subset of vectors to describe any particular input.

Image = ) aV; where n < m (2.5)

where m is the number of dimensions required to represent all images in
the population (e.g., all natural scenes).

For example, with a three-pixel image where only two pixels are
nonzero at a time, it is possible to have:

axy; + be Uax, + bX3 Uax; + bX3 (26)

This state space consists of three orthogonal planes. If the data fall
in these three planes with equal probability, then there will be no cor-
relations in the data and therefore the principal components will not
provide the axes of the planes (indeed, there are no principal axes of
the state space). However, by choosing vectors aligned with the planes
(e.g., x1.X2,x3), it is possible to have a code in which only two vectors are
nonzero for any input. In some situations, the principal components may
even point in the wrong direction for achieving a sparse code. Figure 7A
shows an example where the data fall along slightly nonorthogonal lines.
In this case, there is a positive correlation in pixels. As with the ellipse
shown in 7B, the principal components lie along the diagonals rather
than the axes of the data. However, selecting vectors aligned with the
data can produce histograms with positive kurtosis even though these
are nonorthogonal. Indeed, it is important to recognize that the optimal
sparse representation of a data set is not necessarily an ortho-normal
representation.

Figure 7C shows a three-dimensional variation that has some inter-
esting properties. If the state space forms a hollow three-dimensional
cone like that shown, the first principal component will fall along the
major axis of the cone. Indeed, Figure 7D shows an ellipsoid with the
same principal axes as 7C. However, in the case of the ellipsoid, all the
redundancy is captured by the principal components (i.e., the principal
axes define the ellipse). In the case of the cone, the principal components
fail to exploit some of the most interesting aspects of the data.

The reason for using the cone as an analogy is that the vectors along
the tangents of the cone extending from the origin can allow a sparse
representation but the probability distribution is locally continuous. Also,
we have found that the cone provides a reasonable description of how
a localized function (e.g., a gaussian blob) will be distributed within
the state space when the feature is varied in position and amplitude.
However, a three-dimensional state space cannot begin to describe the
full complexity of the redundancy in natural scenes, so the cone should
be considered as only a crude example. The precise form within the state
space is not critical to the argument. For a sparse code to be possible, a
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(A) (B)

© )

Figure 7: (A) An example of a data distribution where the principal components
lie along the diagonal but where such components are ineffective at producing a
sparse code. (B) A data set with the same principal components (an ellipse). (C,
D) Two three-dimensional examples of state spaces that have the same principal
components. State spaces like that shown in A and C allow sparse coding. State
spaces like B and D do not. It is suggested that the local structure available in
natural scenes produces a high-dimensional state space analogous to this cone
rather than the ellipse.

large set of vectors must be required to describe all points on the form
(all possible images) but the form must require only a subset of vectors
to describe any particular point in the space (any particular image)—
equation 2.5.

There will always exist a wide range of shapes of the probability
density function that can result in the same principal components. The
possibility of finding a sparse code depends on this shape. For an el-
lipsoid, it is not possible to produce a sparse output. In this paper, it is
proposed that the signature of a sparse code is found in the kurtosis of
the response distribution. A high kurtosis signifies that a large propor-
tion of the cells is inactive (low variance) with a small proportion of the
cells describing the contents of the image (high variance). However, an
effective sparse code is not determined solely by the data or solely by
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the vectors but by the relation between the data and the vectors. In the
next section we take a closer look at the vectors described by the recep-
tive field profiles of two types of visual cells and look at their relation to
natural scenes.

Before we begin this description, it should be noted that the results of
several studies suggest that cells with properties similar to those in the
mammalian visual cortex will show high kurtosis in response to natural
scenes. In Field (1987), visual codes with a range of different bandwidths
were studied to determine how populations of cells would respond when
presented with natural scenes. It was found that when the parameters
of the visual code matched the properties of simple cells in the mam-
malian visual cortex, a small proportion of cells could describe a high
proportion of the variance in a given image. When the parameters of the
code differed from those of the mammalian visual system, the response
histograms for any given image were more equally distributed. The pub-
lished response histograms by both Zetzsche (1990) and Daugman (1988)
also suggest that codes based on the properties of the mammalian vi-
sual system will show positive kurtosis in response to natural scenes.
Burt and Adelson (1983) noted that the histograms of their “Laplacian
pyramids” showed a concentration near zero when presented with their
images and suggested that this property could be used for an efficient
coding strategy. In this paper, it is emphasized that these histograms
have these shapes because of the particular relation between the code
and the properties of the images. In particular, when the input has sta-
tionary statistics, it is the phase spectrum that describes the redundancy
required for sparse coding.

In previous work by the author (Field 1993) complex correlations
in natural scenes were studied to determine the extent to which the
phases were aligned across the different frequency bands. The extent
of the phase alignment across neighboring frequency bands was found
to be proportional to frequency (i.e., at high frequencies, the phases were
aligned across a broader range of frequencies). In other words, at low
frequencies, local structure tends to be spatially extended while at high
frequencies the local structure tends to be more spatially limited. It was
noted that this particular alignment in phases would be expected if these
scenes were scale invariant with regards to both their amplitude spectra
and their phase spectra. It was proposed that, to a first approximation,
natural scenes should be considered as a sum of bandlimited, self-similar
“phase structures” (points of phase alignment). The spectral extent of this
phase alignment was found to be well matched to the bandwidths of cor-
tical simple/complex cells (Field 1989, 1993) and it was suggested this
property is what allowed the visual system to produce a sparse output.
We will return to this discussion when we consider synthetic images that
produce high kurtosis in wavelet transforms. First, however, this study
considers a more direct test of sparse coding by looking at the kurtosis
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of the response distributions of two types of visual cells when presented
with natural scenes.

3 Receptive Fields in the Mammalian Visual Pathway as Vectors ___

Just as it is possible to rotate the coordinate axes in a wide variety of ways,
there exist a wide range of transforms that are capable of representing
the information in an n-dimensional data space. The Fourier transform
represents one example of a rotation. Gabor (1946) described a family
of transforms that were capable of representing one-dimensional wave-
forms. These ideas were extended by Kulikowski ef al. (1982) to include
transforms in which the bandwidths increase proportionally to frequency.
Such transforms, which have recently become known as “wavelet trans-
forms” (e.g., Mallatt 1989), consist of arrays of self-similar basis functions
that differ only by translations, dilations, and rotations of a single func-
tion. Although much of the work on wavelet transforms has been de-
voted to the development of ortho-normal bases (e.g., Adelson et al. 1987;
Daubechies 1988) the coding with these transforms has found a wide va-
riety of applications (e.g., Farge et al. 1993) from image processing to the
representation of turbulence. For our purposes, however, it is important
to recognize that such transforms can be considered as rotations of the
coordinate system.

Figure 8 shows one part of a two-dimensional implementation of a
wavelet transform. Wavelets based on the gaussian modulated sinusoid
(i.e., Gabor functions) have proved to be popular models of the visual
cortex (Watson 1983; Daugman 1985; Field 1987). Although the Gabor
function has found some support in the physiology (Webster and DeVal-
ois 1985; Field and Tolhurst 1986; Jones and Palmer 1987), other functions
have been proposed such as the Cauchy (Klein and Levi 1985) and the
log-Gabor used in this study (Field 1987). Transforms based on these
functions capture some of the basic properties of cells in the mammalian
visual cortex. (1) The receptive fields are localized in space and are band-
pass in frequency but overlap in both space and frequency. (2) The spatial
frequency bandwidths are constant when measured on logarithmic axes
(in octaves) resulting in a set of self-similar receptive fields. (3) They
are orientation selective. These basic properties provide the basis for a
number of models of visual coding and the model used in this study
does not have any major components that differ from previous models
(e.g., Watson 1983; Daugman 1985; Field 1987).

It is important to recognize that these transforms are not ortho-normal.
First, the basis functions are not quite orthogonal. Second, in this study
(as in Field 1987) the vector length of the transform increases with fre-
quency (i.e., the peak of the spatial frequency response is constant and
the bandwidth increases). As previously noted, this results in a code
with distributed activity in the presence of images with 1/f spectra like
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that found in natural scenes (Field 1987; see Brady and Field 1993 for a
discussion of vector length). This means that the variance of the filtered
images will be roughly the same magnitude at the different frequencies.

It must also be emphasized that the functions used in this study to
model visual neurons are highly idealized versions of actual cells. Both
the models of retinal neurons and cortical simple cells involve codes in
which all the cells have the same logarithmic bandwidth. Visual neurons
are known to show a range of bandwidths which average around 1.5 oc-
taves but become somewhat narrower at higher frequencies (e.g., Tolhurst
and Thompson 1982; DeValois et al. 1982). However, the most important
difference is that the “cells” in this study do not have many of the known
nonlinearities found in cortical simple cells (e.g., end-stopping, cross-
orientation inhibition, etc.). Indeed, the response histograms are allowed
to go negative in our modeled cells while actual cortical cells can pro-
duce only the positive component of the histogram. We will return to
this discussion of nonlinearities later. However, it should be remembered
that the simple cells that are modeled are only rough approximations to
the cells that are actually found in the visual cortex.

The codes in this study represent images with arrays of basis func-
tions that are localized in the two-dimensional frequency plane as well
as the two-dimensional image plane. Figure 8 shows one example of the
division of the two-dimensional frequency plane and the corresponding

Figure 8: Two-dimensional wavelet. Three-dimensional information diagrams
for a two-dimensional wavelet. The information diagrams are actually four-
dimensional (u,v,x,y) but we have limited the diagram to the representation
of a single orientation, to allow a graphic description.
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representation in space for one orientation and one phase. Each basis
function is thus localized in the four dimensions of x,y,u,v. In this par-
ticular description, the spatial sampling grid is rectangular, but this is
not a requirement. One requires a four-dimensional plot to cover the
full 2-D space by 2-D frequency trade-off, but this is difficult to depict
graphically. If we consider only a single orientation for the purposes of
the display, it is possible to show the space-frequency trade-off using the
representations shown in the figure.

A comment should also be made with regards to the phase spectra
of these filters. In line with previous studies (Field 1987, 1989, 1993),
the oriented wavelet transform uses a pair of even- and odd-symmetric
filters (i.e., filters in quadrature) at each location. Since these receptive
fields are localized, they can be defined in Fourier terms by an alignment
in the phase at the center of the receptive field (e.g., Field and Tolhurst
1986; Field 1993). Even complex cells have localized receptive fields, so
to some extent, they must also be phase selective. One recent model of
complex cells describes the response of a complex cell as a vector sum of
two quadrature-phase cortical cells (Field 1987; Morrone and Burr 1988).
By this model, complex cells detect an alignment of phases at particular
locations of the visual field but the response does not depend on the ab-
solute phase of that alignment (e.g., sine versus cosine). However, in this
study the intention is not to model all of the various forms of nonlinearity
found in the mammalian visual system. Rather, the goal is to show that
the basic properties of visual neurons (i.e., orientation tuning, spatial fre-
quency tuning, and position selectivity) produce a sparse representation
of natural scenes.

4 Kurtosis in the Response to Natural Scenes

In the previous sections, it was proposed that if the visual system is pro-
ducing a sparse representation of the environment then the histograms
describing the response of the visual system should have a high kurtosis.
In this section, these two approaches will be contrasted by investigating
the histograms of the cells in several visual codes.

4.1 Method.

Images. The images used in the following sections consist of digitized
photographs of the natural environment. They consist of 55 scenes, six
of which are shown in Figure 9. The only photographic restriction was
that the images have no man-made features (buildings, signs, etc.) since
these tend to have different statistical structures (e.g., a higher probability
of long straight edges). Images were photographed with Ilford XP1 film
using a 35-mun camera. Photographic negatives were scanned using a
Barneyscan digitizer that provided a resolution of 512 x 512 pixels per
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Figure 9: Examples of six images used in this study. Each of the images was
calibrated for the intensity response of the film.

picture with 256 gray levels. The images were calibrated for luminance
using Munsell swatches allowing the pixel values to have a linear relation
to the image intensities in the original scene. The optics of the camera
were taken into account by determining the response to thin lines and
correcting for the changes produced in the amplitude spectrum (i.e., the
modulation transfer function). Before analysis, the log of the image was
determined and the calculations were based on this simple nonlinear
transform of the image. This allows the units to respond in terms of
contrast (i.e., ratios of intensities) rather than to intensity differences (i.e.,
amplitude) since:

log(a) — log(b) = log(a/b) 4.1)

This is believed to produce a more accurate representation of cells in the
visual pathway since cells are know to produce a more linear response
to contrast (e.g., see Shapley and Lennie 1985) rather than amplitude.
It was also found that the pixel histograms of some of the images had
spuriously high kurtosis values (several images had K > 20 before the
log transform) because of a few bright points in the image such as bright
sky filtering through a tree. One should note film normally uses a com-
pressive gamma, so studies that do not calibrate their film end up with



sensory Coding IO

similar high-intensity compression without intending to do so. Also, this
collection of images did not contain large blank regions (e.g., an image
of half sky). Such images result in a large number of inactive cells that
will also increase the kurtosis for any code using local operators. These
efforts were made to minimize any biases that might have been present
in our image collection and allow a more accurate comparison of the
different codes.

4.2 Population Activity. Population measures were based on the out-
puts of arrays of cells determined by convolving the images with the
appropriate filters. The methodology is similar to that of Field (1987).
However, in this study results are provided for a fixed number of spatial
frequencies and orientations. Two types of filters are compared. The first
is a center surround operator made from a difference of gaussians (DOG)
where the surround has three times the width of the center.

2(x,y) = 9e~HANAP _ pmla i) 2060} (4.2)

For the DOG calculations, each image was convolved with two filter
sizes (the spectrum peaked at 20 and 40 cycles/picture). The second type
is the oriented “log-Gabor” described previously (Field 1987). Radially
the function has a log-normal spectrum:

(k) = e~ nk/ko? /2o ko) (4.3)

and is gaussian along the orthogonal axis.

As in Field (1987) the local phase was represented by a pair of filters in
quadrature (i.e., even-symmetric and odd-symmetric). Thus, each image
was convolved with filters at two spatial frequencies (ko = 20 and 40
cycles/picture), four orientations (10, 55, 100, and 145°), and two phases.
For each bandwidth selected, this requires 2 x 2 x4 = 16 convolutions per
image to obtain the total response histograms at the 8 spectral locations.
Although these codes do not provide a complete representation of the
image, the results provide a relatively direct method of comparing the
population responses of different codes and eliminate problems of filters
near the edges of the spectrum.

With the wavelet codes, different spatial frequency bandwidths are
compared. With the orientation bandwidth set to 40° orientation tuning
(full width at hailf height), the spatial frequency bandwidth was set to
one of 8 spatial frequency bandwidths ranging from 0.5 to 8.0 octaves in
logarithmic steps where the bandwidth is defined as

Boct = 1n2(k2/k1) (44)

where k; and k, define the lower and upper frequencies defining the
width at half-height.

For each image and each bandwidth, the kurtosis of the distribution
was determined by calculating the histogram of the pixels from the 16 fil-
tered images. Near the edges of each of the filtered images, the response
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of any basis function can produce spurious results. To remove these ef-
fects, only the data from the central 180 x 180 region was used in the
analysis. Thus for each image, the histograms were based on a total of
16x180x180 = 518, 400 samples for the wavelet and 2x 180 x 180 = 97, 200
samples for the DOG. One should note that these samples are not com-
pletely independent samples since the images are not sampled in pro-
portion to the size of the basis function as in Field (1987). However, this
will have minimal effect on the overall histograms but implies that the
low-frequency channel (e.g., at 20 cycles/picture) will have histograms
based on fewer independent samples than the high-frequency channels
with smaller receptive fields (e.g., 40 cycles/degree).

4.3 Results. Figure 10A shows the histogram for image 1 with a sin-
gle condition (spatial frequency bandwidth: 1.4 octave-20° orientation
bandwidths). With these filters, the response of any function is as likely
to be positive as negative. One can see that the general form of the
histogram is much like that shown in the kurtosis plots described previ-
ously. Indeed, this pattern has a kurtosis of 6.2. Figure 10B shows the
results describing the kurtosis for the original image, the DOG function,
and the wavelet when the bandwidth was fixed at 1.4 octaves. These
results show that both the DOG function and the oriented wavelet show
increased kurtosis. Figure 10C shows the results for 20 1/f noise patterns
like those shown in Figure 3. These images have random phase spectra
but similar amplitude spectra to natural scenes (and therefore the same
principal components).

Figure 11A shows the results describing the kurtosis of the response
histograms for the wavelet as a function of the spatial frequency band-
width. Results are shown for the six images shown in Figure 3. Fig-
ure 11B provides a histogram of the bandwidths that produce peak kur-
tosis for all 55 of our natural scenes. These results show that the band-
width that produces the maximum kurtosis typically falls in the range
of 1.0 to 3.0 octaves. This falls within the range of bandwidths that are
most commonly found in the mammalian visual system (e.g., Tolhurst
and Thompson 1982).

5 Discussion

The results shown above support the notion that codes that have similar
properties to that found in the mammalian visual system are effective at
producing a sparse representation of the natural scenes. The results in
Figure 10 suggest that as one moves from the retina to the cortex, the
kurtosis of the distribution increases. Higher levels appear to be more
capable of taking advantage of the redundancy in natural scenes.

The redundancy that is captured by these codes is not due to the
amplitude spectra of the images. Figure 10B shows that images with
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Figure 10: (A) The response histogram for a single image using the wavelet. The
histogram is based on the response at four orientations at spatial frequencies of
20 and 40 cycles/picture and two phases (even- and odd-symmetric). (B) The
mean kurtosis for the images calculated from the pixels of the original image,
after convolution with the difference of gaussians and after convolution with
the wavelet. The bottom right shows the same processes with 20 1/f noise
patterns that have approximately the same amplitude spectra as that in the
natural scenes.

similar amplitude spectra as natural scenes but random phase spectra
produce histograms with kurtosis values of 0.0 (normal distributions).
Since these images differ only in their phase spectra, it is clear that the
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Figure 11: Distribution of peak kurtosis as a function of bandwidth. (A) The
kurtosis of the response distributions for the six images shown in Figure 9 as
a function of the spatial frequency bandwidth (orientation bandwidth is fixed
at 40°). For each of the 55 images, the kurtosis of the response distribution
was determined and the bandwidth that produced the highest kurtosis was
calculated. (B) The distribution of spatial frequency bandwidths that produced
the highest kurtosis.

phase spectra of natural scenes play a major role in determining whether
the wavelet transform will produce a sparse output.
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5.1 Synthetic Images That Produce High Kurtosis. In Field (1993),
it was proposed that self-similar transforms are effective at producing
sparse representations with natural scenes because such scenes have
sparse, scale-invariant phase spectra. That is, the phases in such scenes
are aligned at a relatively small number of locations in space/frequency
and the spectral extent of the alignment is proportional to frequency. It
is a relatively simple process to synthesize images that have such proper-
ties. Figure 12 provides examples of two such images. These particular
images were created using the equation:

a Bo’m

Z Z u)nmg[TUmx — X Tffmy - ynm} (51)

m=0 n=1

where 7 is the number of scales in the image, (# controls the density of the
elements at each scale, o controls the spectral distance between scales,
and 7 controls the relative spatial extent of the function at each scale.
Figure 12A and B shows two densities where g(x, ) is a gaussian mod-
ulated sinusoid. Each of the functions is added with the same average
spatial amplitude independent of scale (wy, has the same average ampli-
tude at all scales). If each function is treated as a vector, then the vector
length of each function decreases as the scale increases (proportional to
1/f). By increasing the number of vectors in proportion to the square of
the frequency and adding them in random positions, this technique pro-
duces a scale-invariant 1/f amplitude spectrum but in which the phases
are locally aligned (See Appendix).

Each of these images can be thought of as an “inversion” of the visual
code. In a sparse-distributed code, only a subset of the cells is active but
each cell has the same probability of activity. The method described in
equation 5.1 is roughly equivalent to assigning a low probability to each
vector in a wavelet code and summing the sparse set of vectors together.
The state space of these images is analogous to the state space shown in
Figure 4 but, of course, in higher dimensions. We are currently attempt-
ing to provide a better description of the high-dimensional state space
and believe that a set of high-dimensional cones of different diameters is
a useful analogy. A subset of vectors from the wavelet code can represent
this image because it is created by a subset of vectors from the wavelet
code. Although these images do not have all the redundancy of natural
scenes, they provide a good first approximation and certainly provide a
better approximation than the 1/f noise patterns shown in Figure 3.7

The results in Figure 10 suggest that although the DOG patterns show
a significant increase in kurtosis, the oriented wavelet results in higher
kurtosis. This suggests, that in natural scenes, when local structure is
present (i.e., the phases are aligned), the structure tends to be oriented.
This is not mathematically necessary. It is possible to create images

3As the density approaches 0.5, the images show the same structure as the 1/f noise
patterns shown earlier in Figure 3.
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Figure 12: Images that produce high kurtosis can be created by “inverting” the
visual code. The top images were created by distributing a set of self-similar
functions as described in equation 5.1. The images were created by producing
a random sum of the oriented wavelet basis functions. The two images shown
were created by assigning a probability of either (A) 0.01, (B) 0.08, or (C) 0.3 to
each of the members of the wavelet basis set (e.g., Fig. 8). The lower right image
(D) was created using nonoriented difference of gaussians (DOG). It is proposed
that images such as these provide a first approximation to the statistical structure
of natural scenes. The state space is analogous to the cone (E) with the principal
axes aligned with the Fourier vectors.

like that shown in Figure 12 using DOG functions instead of oriented
wavelets. Under such circumstances, an oriented wavelet will not pro-
duce an increase in kurtosis over the DOG.
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It is proposed that because natural scenes have regions where the
phases are locally aligned (i.e., the images have local structure), both
ganglion cell receptive fields and cortical receptive fields have the shape
that they do. The amplitude spectra of natural scenes and the limits in
quantal catch may certainly be important in understanding the spatial
frequency tuning curves of ganglion cells and the contrast sensitivity
function as suggested by Atick and Redlich (1991, 1992). However, it is
proposed here that it is the phase spectrum of natural scenes that one
must understand to account for the phase spectra of receptive fields in the
visual pathway. Indeed, it is likely that many natural phenomena show
this self-similar phase structure and may be why the wavelet transform
has found so much success in applied mathematics.

5.2 Higher-Order Redundancy in Natural Scenes. Although the im-
ages in Figure 12 may provide a good first approximation to the statistics
of the environment, these images certainly do not capture all the redun-
dancy that is present in real scenes and do not look that much like real
scenes. Consider the analogy of looking at the redundancy in musical
symphonies. One might try to find the properties of the typical notes that
are played. One might then try to create synthetic symphonies by play-
ing those notes randomly. Although these sounds would be more like
symphonies than random noise, they would not sound like symphonies
because they would not contain any of the rules of music. Similarly, the
images in Figure 12 are more like natural scenes than 1/f noise, but they
do not contain any of the combinatorial rules found in real scenes.

As previously noted (Field 1993), natural scenes show a significant de-
gree of continuity across space and frequency. Figure 13 shows a simple
example of this continuity. A “fractal” edge is split into three frequency
bands. Across the different frequency bands and across the length of the
edge, the orientation of the edge twists and turns. Locally, the shift in
orientation is continuous. The wavelet code does not directly take ad-
vantage of this continuity. However, it has recently been proposed (Field
et al. 1993) that the visual system may make use of this redundancy by
using connections between locally oriented units along the lines of the
lateral connections found in the primary visual cortex (e.g., Rockland and
Lund 1983; Blasdel et al. 1985; see Gilbert 1992 for a review). Computa-
tional studies by Zucker et al. (1989) suggest that such an approach may
be an effective strategy in representing continuous features in natural
scenes.

It should also be emphasized that the “cells” modeled in this study do
not have the spatial nonlinearities that are often found in visual neurons.
Such nonlinearities come in various forms. First, in primary visual cor-
tex, “simple cells” do not represent the majority of cells. Both complex
and hypercomplex cells certainly represent a major component to visual
coding and show highly nonlinear behavior. However, the basic find-
ings described here will at least apply to complex cells. The bandwidths
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and spatial extents of complex cells are similar to those of simple cells.
As noted earlier, one model of complex cells suggests that they detect an




sensory Coding 291

alignment of phases, like simple cells, but do not differentiate the absolute
phase of that alignment. Since they are localized in space/frequency in
a similar manner to simple cells, it would be expected that complex cells
will show a similar sparse representation to the modeled simple cells
studied here.

It should also be noted that even classically defined simple cells ex-
hibit a number of important nonlinearities (e.g., end-stopping and cross-
orientation inhibition). We currently believe that these nonlinearities may
help to increase the “sparseness” of the code by allowing the code to play
a local “winner take all” strategy. This is beyond the scope of this paper,
but it should be mentioned that the kurtosis values shown in Figures 10
and 11 are likely to be significantly lower than the kurtosis values actually
found in the mammalian visual cortex.

It is important to treat the results described in this study with some
caution. We have not added the nonlinearities known to exist in the
mammalian visual system and we have only searched through a small
variety of linear transforms. There may well be linear transforms that
produce higher kurtosis than the wavelets tested here and it is quite
likely that there exist more effective nonlinear codes. Our main goal
in this paper is to demonstrate that the bandpass, localized receptive
fields found in the mammalian visual system can take advantage of the
redundancy in the environment without compressing the representation
(reducing redundancy) and without using the principal components.

5.3 Why Sparse Coding? In this paper, evidence was provided that
codes that share properties with the mammalian visual system produce
a sparse-distributed output to natural scenes. But the question remains
as to why a sensory system would evolve a strategy like sparse coding.
As was noted, there are a number of reasons that one might want to
produce a compact code. A compact code allows the data to be stored
and transmitted with a smaller population of total cells. But what are
the advantages of sparse codes?

Under some conditions, it is possible to use the sparse output to
produce a compressed image. Techniques such as run-length coding
are designed to do just that. There is also a considerable literature on
compression techniques with sparse matrices (e.g., Evans 1985; Schendel

Figure 13: Facing page. Unlike the scenes shown in Figure 12, natural scenes
have structures that are continuous across space and frequency. The orientation
of the edge shifts across the length of the edge as well as across the different
scales. The edge has a well-defined orientation only at a given scale and po-
sition along the length of the edge. This oriented structure that is localized in
space/frequency makes the wavelet code an effective representation. However,
the continuity between scales and across the length of the edge at each scale
represents a form of redundancy that is not directly captured by the wavelet
and requires more complex processing.
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1989). However, it is proposed here that sparse coding serves purposes
other than compression. Barlow (1972, 1985) has proposed that codes
that minimize the number of active neurons can be useful to the re-
sentation and detection of “suspicious coincidences.” Zetzsche (1990)
has suggested that it is the work on associative memories that provides
the most biologically plausible reasons that sensory systems would use
sparse coding schemes.
Three interrelated advantages are described below.

Signal-to-Noise. First, a sparse coding scheme can increase the signal-
to-noise ratio. As was noted in Field (1987), if most of the variance
of a data set is represented by a small subset of cells, then that subset
must have a high response relative to the cells that are not part of the
subset. The smaller the subset, the higher the response of each member
of the subset, given an image with constant variance. If we consider the
response of the subset as “the signal” and if all the cells in the population
are subject to additive noise, then by increasing the response of the subset
of cells relative to the population, it is possible to increase the probability
of detecting the correct subset of cells that represent the image. However,
it should be emphasized that arguments of this form depend critically
on the properties of the noise (e.g., correlated versus uncorrelated) and
the location of the noise (e.g., photon versus neural transduction noise).

Correspondence and Feature Detection. Although signal-to-noise consid-
erations may be important, it is proposed that the main reason for sparse
coding is that it assists in the process of recognition and generalization.
In an ideal sparse code, the activity of any particular basis function has
a low probability. Because the response of each cell is relatively rare,
tasks that require matching of features should be more successful. Con-
sider the problem of identifying a corresponding structure (e.g., an edge)
across two frames of a movie or across two images of a stereo-pair. If
the probability of a cell’s response has probability p and there are n com-
parable cells of that type within some region of the visual field then,
assuming independent probability of response, the probability of detect-
ing the correct correspondence depends on the probability that only the
corresponding cell responds, which is

P(only corresponding cell responds) = (1 — p)”

The lower the probability p (i.e., the more sparse the code), the more likely
a correct correspondence. As noted above, we would not expect cortical
cells to be completely independent of their neighbors. Nonetheless, the
general rule should still hold. As a code becomes more sparse, the proba-
bility of detecting a correct correspondence increases. This suggests that
a sparse code should be of assistance in tasks requiring solutions to a
correspondence problem and can be related to what Barlow calls a sus-
picious coincidence (e.g., Barlow 1989). If the probability that any cell
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responds is low (p < 0.5), then the probability of two cells responding
is p* (p < 0.25) assuming response independence. Higher-order rela-
tions (pairwise, triad, etc.) become increasingly rare and therefore more
informative when they are present in the stimulus.

This implies that the unique pattern of activity found with sparse
codes may also be of assistance with the general problem of recognition.
If relations among units are used to recognize a particular view of an
object (e.g., a face), then with a sparse code, any particular high-order
relation is relatively rare. In a compact code, a few cells have relatively
high probability of response. Therefore, any particular high-order rela-
tion among this group is relatively common. Overall, in a compact code
different objects are represented in terms of the differential firing of the
same subset of cells. With a sparse-distributed code, a large popula-
tion has a relatively low probability of response. Different objects are
represented by a unique subset of cells. That is, different objects are
represented by which cells are active rather than how much they are
active.

The primary difficulty with this line of thinking is that implementing
a process that detects sparse structure in neural architecture may not be
so straightforward. Higher-order relations may be relatively rare in a
sparse code, but detecting all possible nth-order relations among m cells
requires m" detectors. It is likely that the visual system looks only for
“probable” relations by looking at combinations only within local regions
and looking only for probable structure (e.g., continuity). This is certainly
an interesting problem, but further study of the higher-order structure of
natural scenes would be required to determine whether the visual system
is using an effective strategy.

Storage and Retrieval with Associative Memory. The third advantage of
sparse coding comes from work on networks with associative memories
and is related to the above discussion. Several authors have noted that
when the inputs to the networks are sparse, the networks can store more
memories and provide more effective retrieval with partial information
(Palm 1980; Baum ef al. 1988). Baum et al. (1988) suggest that the ad-
vantages of sparsity for cell efficiency are “so great that it can be useful
to artificially ‘sparsify’ data or responses which are not sparse to begin
with.” Indeed, it is not surprising that many types of networks will
solve problems more efficiently if the inputs are first “sparsified.” Since
the sparse representation will have fewer higher-order relations, learn-
ing to classify or discriminate inputs should require less computation.
Therefore, “sparsifying” the input should help to simplify many of the
problems that the network is designed to face. This work with associative
memory will hopefully lead to a better understanding of the advantages
of sparse codes and help us to understand whether transforming the data
to create a sparse input is generally a useful strategy to help networks
solve problems.
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In this study, there is no attempt to provide a complete description of
the possible uses of sparse codes. Rather, the goal is to demonstrate that
sparse coding represents one important method for taking advantage of
redundancy and that sensory systems show evidence that they make use
of this method.

5.4 Factorial Codes and Projection Pursuit. A gaussian distribution
has the lowest redundancy (highest entropy) of any distribution given a
fixed variance. Thus, a distribution with high kurtosis has a lower en-
tropy than a gaussian distribution. The results shown in Figure 10 show
that the visual code has relatively redundant first-order histograms. A
sparse-distributed code converts high-order redundancy (relations be-
tween units) into first-order redundancy (the response distributions of
the basis vectors). Therefore, a transform that produces highly redun-
dant histograms has decreased the higher-order redundancy.

Is it possible to find a code that completely removes higher-order
redundancy? In such a case, the responses of the vectors would be inde-
pendent of one another. For example, if the responses of two vectors are
independent then

P(V;nV)) =P(V:)-P(V))
and
P(V;| V) =P(V))

and in general, if all the vectors are independent then the probability of
any given image can be determined by multiplying the probabilities of
each of the vectors.

P(image) = [[ P(V.

In this case, the image is described as having a “factorial code” (Barlow
et al. 1989; Barlow 1987; Schmidhuber 1992; Atick et al. 1993).

A population of images like those shown in Figure 12 can have nearly
factorial codes since these were actually generated by combining nearly
orthogonal vectors with independent probabilities. That is, the probabil-
ity that any function was added to the image did not depend on the prob-
ability that any other function was added to the image. The differences
between the images in Figures 12 and 13 point out the importance of
sources of redundancy that remain after coding by the wavelet. Indeed,
the fact that the natural scenes do not look like the images in Figure 12
demonstrates that after natural scenes are coded by the wavelet, the re-
sponses of wavelet basis functions will not be independent. Thus the
individual probabilities of units are unlikely to predict the probability of
a particular natural scene. Whether one is searching for a sparse code or
a factorial code, the goal is to find a set of units that are as independent



bensory Loamg 40

from each other as possible. However, the sparse coding approach pro-
vides a guide for achieving this goal. By maximizing the kurtosis (i.e.,
the redundancy) of the response histograms, one effectively minimizes
statistical dependencies between units (Field 1987).

In this paper, there has been no discussion of how one might find
the optimal sparse code for a given data set. An effective sparse code
must have two properties. It must span the space of inputs (i.e., preserve
information) and show high kurtosis in the response histograms. At this
time, there do not appear to be any learning rules that can achieve these
goals. There is a problem related to this, described as “projection pursuit”
(e.g., Friedman 1987; Huber 1985; Intrator 1992, 1993). In many domains,
where one must deal with high-dimensional data, one is interested in
finding interesting projections of the data. The “projections” refer to the
response histograms of the vectors describing the data. Intrator (1992,
1993) has noted that one should look for projections (histograms) that
are as far from gaussian as possible. Indeed, in line with the above
discussion, the more non-gaussian the histogram, the more independent
the units should be. High kurtosis represents just one way to deviate
from a gaussian distribution. It is not clear whether natural scenes have
redundancy that will allow other forms of non-gaussian behavior in the
response histograms. It is also not clear that the visual system can take
advantage of other forms of non-gaussian behavior. In this paper, it is
noted only that the visual system appears to have found one type of
non-gaussian distribution (high kurtosis) and this particular distribution
results in a sparse representation.

However, at this time, there is no known technique for finding the
optimal sparse code. Techniques such as those of Intrator (1992, 1993),
Foldiak (1990), Schmidhuber (1992), and Linsker (1993) may ultimately
provide insights into this problem, but their work demonstrates that the
solution may not be a simple one.

6 Summary

In this paper, we have compared two approaches to sensory coding: com-
pact and sparse-distributed coding. When the statistics of the inputs are
stationary, it was noted that compact coding depends primarily on the
amplitude spectra of the data (i.e., the correlations). When effective di-
mensionality reduction is possible, compact coding provides a good first
step. Indeed, some aspects of sensory coding (e.g., trichromacy) require
a consideration of the efficiency achieved by dimensionality reduction.
However, many redundant data sets do not allow effective compression.
Furthermore, even if compact coding is possible, there will be a variety
of codes that will produce equal compression.

If the goal of a code is to assist higher level processing (e.g., recogni-
tion), then other coding strategies and other forms of redundancy must
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be considered. To account for the primary receptive field properties of
cells found in the mammalian visual system (i.e., localized, bandpass,
self-similar), it was proposed that one must consider a sparse-distributed
representation of natural scenes. It was noted that when the statistics of
the data are stationary, sparse coding depends primarily on the phase
spectra of the data. In this paper, we have concentrated on the visual
system and the statistics of natural scenes. However, the main ideas
presented here can be applied to any sensory system. Natural sounds,
for example, are likely to have local structure similar to that found in
natural scenes. We are currently working on the question of whether the
sparse coding approach to natural sounds can provide an account of the
frequency selectivity found in auditory neurons.

It is proposed that the evidence for this selectivity will be found in the
kurtosis of the response distribution. If a sensory system is designed for
sparse coding, then we would expect cells in that sensory system to show
high kurtosis in the presence of the typical sensory environment. If the
general goal of sensory coding is to produce a sparse representation of
the environment, then we would expect that recording from any sensory
neuron in any animal will produce a histogram with high kurtosis—as
long as the recording is performed in an awake, behaving animal in its
natural environment. This is a general claim that is left for future work
to answer.

Appendix

An image consisting of the appropriate functions distributed across the
image in the appropriate manner will result in an image that is scale
invariant in both contrast and structure. As noted previously (Field 1987),
a two-dimensional image that is scale invariant in contrast will have an
amplitude spectrum that falls with frequency as 1/f. In this appendix, it
is demonstrated that images that obey the rules described in equation 5.1
will be scale-invariant in their contrast (have 1/f amplitude spectra) and
also have a scale-invariant structure. Consider a simple function localized
in space and assigned a scale k. In equation 5.1, the scale k = ¢”. By the
scaling theorem, it follows that

glkx. ky) < Glu/k.v/k) /K

Now consider a sum of scaled functions that are placed in random posi-
tions relative to one another. Functions that are in random position will,
on average, have phases that are orthogonal. In line with the sum of
intensities in incoherent optics, the power spectrum (square of the am-
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1/f amplitude spectrum

Log Amplitude

Log Frequency

Figure 14: See text.

plitude spectrum) is equal to the sum of the power spectra of each of the
functions, thus

Space Amplitude spectra
Soglkx+xiky+yi) —  nlGlu/k.v/k)k)?
’ — VHIG(u/k,o/K)|/R?

In equation 5.1, the images are created by summing /3 - k* functions at
each scale where k oc ™. Thus at each scale, the spectrum is proportional
to

VIRG(u/k.v/k) /K

= G(u/k,v/k)/k
Thus at each scale, the peak of the spectrum falls by a factor of 1/k.
Figure 14 shows an example of the spectra at different scales. The spacing

in the frequency domain is proportional to o™ (m =1,2,3,...). On a log
frequency axis, the spacing is

log(e™) ocm (m=1,2,3,...)

G(u,v,k)

With this sum of scaled functions, the amplitude spectra of the syn-
thetic image will fall as 1/f, that is, the contrast is scale-invariant. The
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local structure is also scale invariant. At each scale k (i.e., within each
frequency band), the image consists of /3 - k* elements of amplitude w,,
and size 1/7k. If we magnify the image by some factor * then we shift to
a scale with /3- (r-k)? elements of size 1 /7k and amplitude w,,,. However,
if we scale our window with the magnification then the area is reduced
by a factor of 1/r*. Thus with a window of constant angular size, the
number of elements at any scale is independent of magnification.

B (r-k)?rP =73k
Thus, at all scales there remain k* randomly positioned elements of
size 1/7k. The images created using the method described in Figure 12
have local structure that is scale-invariant. As noted in the text, this

provides a good first approximation to natural scenes but fails to capture
combinatorial rules found in real scenes.
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