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Sparse Overcomplete Gabor Wavelet Representation
Based on Local Competitions

Sylvain Fischer, Gabriel Cristóbal, and Rafael Redondo

Abstract—Gabor representations present a number of inter-
esting properties despite the fact that the basis functions are
nonorthogonal and provide an overcomplete representation or a
nonexact reconstruction. Overcompleteness involves an expansion
of the number of coefficients in the transform domain and induces
a redundancy that can be further reduced through computa-
tional costly iterative algorithms like Matching Pursuit. Here, a
biologically plausible algorithm based on competitions between
neighboring coefficients is employed for adaptively representing
any source image by a selected subset of Gabor functions. This
scheme involves a sharper edge localization and a significant re-
duction of the information redundancy, while, at the same time, the
reconstruction quality is preserved. The method is characterized by
its biological plausibility and promising results, but it still requires
a more in depth theoretical analysis for completing its validation.

Index Terms—Biological system modeling, image coding, image
edge analysis, overcomplete representations, wavelet transforms.

I. INTRODUCTION

THE GABOR approach involves a representation in terms
of elementary functions (“logons”) that are simultaneously

localized in space and frequency [9]. Gabor functions constitute
a family of bandpass filters that have been widely used in image
processing in a broad range of applications such as texture anal-
ysis, motion estimation, color, etc. They can also be interpreted
as a receptive field model for the simple cortical cells [3]. The
two-dimensional Gabor elementary functions do not constitute
an orthogonal basis, and to obtain exact reconstruction with
Gabor filters in both analysis and synthesis filter banks, an over-
complete basis of functions is required. The number of coeffi-
cients in the transform domain is then larger than the number of
pixels in the image domain, introducing a redundancy which in
principle might limit the usefulness of the transform for image
compression applications.

Orthogonal transforms like the discrete cosine transform
(DCT) or wavelet-based schemes are actually the most used
transforms for image compression. Nevertheless, they suffer
some disadvantages like instability and artificial looking arti-
facts. Biorthogonal wavelets usually introduce aliasing across
the subband analysis. Although such aliasing is canceled at
reconstruction, the signal analysis is not optimal (frequency
bands are not totally separated) and artifacts can be introduced
by the compression.
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Overcomplete Gabor wavelets present the advantage of
avoiding any aliasing at the cost of introducing a large number
of redundant coefficients. Mallat and Zhang [14] showed that
is it possible to represent a signal by means of an overcomplete
dictionary of functions limiting at the same time the informa-
tion redundancy. They proposed an iterative algorithm with the
aim to keep only those dictionary functions that best match the
signal. Olshausen and Field [16] argued that overcompleteness
and such sparse coding algorithms are adequate methods for
decorrelating natural images and it could be a strategy em-
ployed in the primary visual cortex.

It is important to stress that the problem of sparse coding dif-
fers radically from the image compression approaches using or-
thogonal transforms. In particular, finding the sparsest decom-
position from a given overcomplete dictionary is still an un-
solved problem. The solution, nonunique and necessarily non-
linear, is generally approximated iteratively through computa-
tionally costly algorithms. Thus, sparse coding have been very
rarely used for image compression (a review on sparse image
coding can be found in [17]).

On the other hand, Grossberg and coworkers simulated the
behavior of neurons of the primary visual cortex implementing
competitions between neighboring Gabor coefficients. The
method sharpens edges and selects the most favored boundary
orientations [11]. Although useful for denoising, this algorithm
is not invertible and, therefore, cannot be employed directly for
image coding.

The motivation of this paper is to investigate the feasibility
of a new algorithm based on local competitions for removing
the redundancy introduced by an overcomplete Gabor represen-
tation. The usefulness of the method is illustrated in the image
compression area.

Section II summarizes the Gabor wavelets transform method.
Section III describes an iterative algorithm for implementing the
competitive strategy. Section IV summarizes the compression
stages and Section V presents some image compression results.
Concluding remarks are drawn in Section VI.

II. LINEAR GABOR WAVELETS REPRESENTATIONS

Log-Gabor filters are used for the wavelets transform (see [5]
for a thorough description of log-Gabor properties). They are
described in the Fourier domain through the polar coordinates

as

(1)

where is the center of the filter and are, respec-
tively, the scale and angular bandwidths common to all filters.
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Fig. 1. Gabor’s filter set used in this paper. (a) The Fourier domain is covered
by log-Gabor filters with four scales, four orientations, a low-pass filter, and
a high-pass filter. Only the contours at 60% of the maximum of amplitude are
depicted. The high-pass residual filter is represented by the region outside the
bigger circle. Note that even scales are shifted by a �=8 angle so as to obtain
a better coverage of the Fourier domain. (b) Real parts of log-Gabor filters on
four scales and four orientations are drawn in the space domain. The low-pass
and high-pass filters can also be seen, respectively, on the top left and top right
of the image. Second-scale, first-scale, and high-pass filters are magnified,
respectively, by factors of 2, 4, and 8 for a better visualization. (c) Imaginary
parts of log-Gabor filters in the spatial domain. Note low-pass and high-pass
filters do not have imaginary parts.

Fig. 2. (a) Comparison between two exact reconstruction pyramids. The
32� 32 original image x is composed of an unique Gabor function that can
be coded by the pyramid h shown in (b). (b) h pyramid contains a single
nonzero coefficient. The low-pass and high-pass channels are located on the
first row. The bottom row represents the first scale, that is, the highest frequency
channels. The different orientations are arranged in columns. Each bandpass
coefficient contains a real and an imaginary part. The modulus is shown here.
(c) g pyramid is the linear transform of x (explanations are given in the text).

All filters have one octave-scale bandwidth and angular
bandwidth.

The Gabor wavelet transform consists of filtering in the
Fourier domain the source image by a set of log-Gabor filters
located on four scales and four orientations. Note that every two
scales are shifted in orientation for obtaining an hexagonal-like
arrangement which covers more uniformly the Fourier domain
[10]. An additional low-pass filter is used for transmitting the
luminance and a high-pass filter allows encoding the highest
frequencies [15] (all of those 18 filters are represented in space
and Fourier domain in Fig. 1). For shortness, each filter output
will be called a channel.

Filter coefficients below a fixed threshold are zeroed out for
allowing an aliasing-free downsampling. Each filter is slightly
corrected for obtaining exact reconstruction (the correction con-
sists in dividing by the square sum of all the filters). A sparse
downsampling strategy significantly reduces the transform do-
main size. The procedure is based on shifting the frequencies of
each channel to the center of the Fourier domain, diminishing
the Nyquist frequency [24]. The transform domain is arranged
as a pyramid composed by channels of different sizes due to the
downsampling operation (see Fig. 2 as an illustrative example).

The inverse transform consists in summing up each channel fil-
tered by the corresponding log-Gabor function (more details can
be found in [6] and [7]).

This scheme aims at avoiding an excessive expansion of the
transform domain for two main reasons: first, because sparse
coding algorithms do not permit to recover all the redundancy,
and, second, because, even if most of the coefficients will be fi-
nally zeroed out, such a large population of zeros still represents
information for coding. An excessive expansion would then
introduce irremovable redundancy. In practice, the expansion
factor will be chosen around 10 what simultaneously permits
limiting the expansion, avoiding any aliasing and preserving
the smoothness of the filters.

III. LOCAL COMPETITION ALGORITHM

Because the transformation is overcomplete, many pyramids
provide the same reconstructed image by the inverse transform.
Therefore, overcompleteness is tantamount to transformation
nonuniqueness. Being aware of the nonuniqueness, different it-
erative algorithms have already been proposed for searching for
sparse representations [1], [2], [13], [14], [18] (reviews can be
found in [2], [17], [22]). Drawbacks of these algorithms are high
computational cost and some difficulties for finding the sparsest
representations [2], [17]. Thus, they are not frequently used for
image processing applications.

In the particular case of the overcomplete Gabor wavelets, it
seems that an important part of the redundancy can be found
between neighboring transform coefficients. The reason is that
close Gabor functions are nonorthogonal and, therefore, they
respond redundantly to the same image features.

For removing such redundancy and for obtaining a sparse
representation, we propose here an iterative algorithm based on
competitions between neighboring coefficients.

A. Nonorthogonality of Neighboring Gabor Functions

Let us consider an image composed of a single log-Gabor
function [Fig. 2(a)], which can be coded by a pyramid con-
taining a single nonzero coefficient [Fig. 2(b)]. Applying the
linear log-Gabor wavelets transform on does not provide the
pyramid but a pyramid [drawn in Fig. 2(c)]. This pyramid

contains a large number of coefficients spread out in the spa-
tial and frequency neighborhood of the original Gabor function.
Both pyramids and can be used for exact reconstruction of

by the inverse transform. Nevertheless, is a much sparser
representation: After a quantization stage, some entropy calcu-
lations give 19 bits for and 1697 bits for . The goal of the
local competition algorithm is then to obtain the pyramid.

Coefficients represented Fig. 2(c) can be considered as the
projection of the coefficient Fig. 2(b) over the whole set of
log-Gabor functions. Thus, from Fig. 2(c), it can be seen how
the transform coefficients are not orthogonal to their spatial and
frequency neighbors.

Note also that the linear transform does not optimally localize
the image features: The single Gabor function is detected by
a large set of coefficients of different scales, orientations, and
positions. From the pyramid, it is even difficult to say how
many Gabor functions are present in the image (a). From the
pyramid, the answer is clearly one.
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B. Algorithm Description

In order to obtain a sparse representation, the proposed al-
gorithm implements a competition mechanism between neigh-
boring coefficients by zeroing out the lowest coefficients and
by concentrating the amplitude in the highest ones (previous
versions of the algorithm appear in [6]–[8]). As in other sparse
coding algorithms or in orthogonal transform-based image com-
pression, the objective is to obtain as much zeros as possible
among the transform coefficients [17], [13].

The algorithm is based on building at each iteration an exact
reconstruction pyramid with fewer nonzero coefficients.
Each iteration is composed of the following steps.

1) Linear transform. The linear transform is computed as
, where is the source image con-

sisting of pixels; is a pyramid represented
as a vector of real values; the matrix is
the direct transform; and is the general-
ized inverse transform. Because of the transform is over-
complete is not strictly invertible and it
is important to remark that is not the identity. Re-
member, nevertheless, that the linear transform provides
exact reconstruction (see Section II), then is the
identity and .

The first iteration is initialized with .
2) Coefficient selection. Coefficients must satisfy two

criteria in order to be selected. First, they must be local
maxima along the normal to the filter direction. The
second criterion consists in making the coefficients
growing up to a threshold. Coefficients are selected when
they pass the threshold , which is chosen as the max-
imum absolute value of . The growing
is implemented through a sequence of pyramids called

. and is increased at each iteration
by adding as follows (the scalar will be further
described)

(2)

coefficients are selected when their corresponding
coefficients pass above a threshold in absolute value.
Through that process, the largest coefficients will be
first selected, and at each step, some smaller coefficients
will be added up to the selection.

An approximation pyramid is obtained by zeroing
out all the nonselected coefficients of

if
otherwise

(3)

Nonselected coefficients will be called as residual
pyramid and denoted . We have

(4)

is proportional to the speed of convergence. A
large implies a quick convergence and a small pro-
vides more refined results. The parameter is chosen
as a fixed value (e.g., ) and can be pro-
gressively increased through iterations for speeding up
the convergence as, e.g., , where

is the maximum absolute value of .

Fig. 3. Comparison between linear and local-competition pyramids of the
ISO standard image “Bike” [the original image is represented Fig. 5(a)].
(a) Third -orientation, second-scale channel from the linear transform. This
channel is sensitive to (�=8) (east-northeast) edges (see the filter Fig. 1).
(b) Same channel after 220 iterations of the local-competition algorithm.
(c) Fourth-orientation, second-scale channel from the linear transform, this
channel is sensitive to (3�=8) (north-northeast) edges. (d) Same channel after
the local competition algorithm. More details are given in the text.

3) Coefficient adjustment. A new pyramid is defined as
follows (for )

(5)

which can also be written as

(6)

Because is the identity, it is straightforward to see
that has the exact reconstruction

(7)

(8)

Because and , we have for
any . In summary, at each iteration , the pyramid
has exact reconstruction.

4) Iteration loop. In the current implementation the number
of iterations is fixed as, e.g., . While

, the algorithm is iterated by going back to step 2.
Fig. 3 compares two channels of the linear pyramid with the

ones obtained after 220 iterations of the algorithm. In both linear
channels high-amplitude coefficients spread around edges so as
the channels look blurred. Moreover many of the edges are du-
plicately represented in both channels, e.g., vertical lines can be
seen in the diagonal channel [Fig. 3(a)] and diagonal lines in
the vertical channel [Fig. 3(c)]. After applying the local-com-
petition algorithm [Figs. 3(b) and (d)], lines are thinner and en-
hanced what indicates better localization of the edges. More-
over, channels are more selective in orientation: fewer edges ap-
pear in both local-competition channels.
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C. Computational Cost and Biological Plausibility

The algorithm computation only requires Fourier transforms
and scalar operations using a limited number of iterations which
is not dependent on the image size. Algorithm complexity is
then where is the number of pixels of the input
image. Other redundancy removal algorithms, like Matching
Pursuit [14], are based on selecting only one coefficient per it-
eration. The present algorithm performs simultaneous compe-
titions throughout all the image by selecting many coefficients
at the same iteration. This causes a significant reduction on the
computational complexity. That is, for selecting 22, 120 coeffi-
cients only 220 iterations are required (see Table I). Moreover,
Gabor wavelets can be implemented as spatial convolutions with
filters of limited support. In such case, the computational com-
plexity would be . Such schemes would be particularly
suitable to be implemented using a neural network approach.

We implemented the method as a biologically plausible
model based on the following classical studies. Gabor functions
are a model for the simple cortical cells [3]. Sparse coding has
been described as a strategy employed by the primary visual
cortex, in particular, at the level of simple cells [16], [18]. Local
competitions could model the masking effect, which is respon-
sible of visual stimuli diminishing when they are placed close
to higher ones [12], [21]. Spatial and orientational competitions
have been implemented by Grossberg et al. [11] in a neural
network modeling simple, complex, and hypercomplex cells.

D. Some Additional Comments About the Algorithm

The present algorithm does not search for an orthogonal
basis of decomposition; therefore, selected coefficients may
be nonorthogonal. The orthogonal condition is relaxed since
Gabor functions are particularly inappropriate to build orthog-
onal basis.

Each iteration modifies following (6). That is, the residual
is removed from while is added for com-

pensating the induced error. It is straightforward to see that
and have the same reconstruction by ; therefore, the
modification (6) does not impair the reconstruction.

is the projection of over all the transform func-
tions. Thus, (6) replaces part of the residual by its projection
on the selected coefficients. This is why, at each iteration, a
part of the amplitude migrates from nonselected to neighboring
selected coefficients, making selected coefficient growing and
nonselected decreasing. Such migration is achieved without
forcing selected coefficients to receive the total amount of
the amplitude, nor forcing nonselected ones to be zeros, as
it would be done when searching for an orthogonal basis of
decomposition.

It is outside the scope of the present paper to establish a proof
of convergence. Note, nevertheless, that, experimentally, the al-
gorithm always converged.

IV. IMAGE COMPRESSION SCHEME

A compression application based on the current scheme is
described in the following. It contains three stages: the Gabor
wavelets transform, the quantization, and the entropy calcula-
tion. The transform is of exact reconstruction; thus, the quan-
tization is the only lossy part of the compression. The quanti-

Fig. 4. Results of the algorithm for a basic example. (a). Original image
(16� 16 pixels) is composed of three Gabor functions: one in the first-scale
(phase 0), one in the second-scale (phase �(�=2)), and one in the third-scale
(phase �). The following insets shows the quantized pyramids. (b) Linear
transform (before applying the first iteration) contains 197 nonzeros. Entropy
is evaluated as 4.57 b.p.p., the root-mean square error (RMSE) of the
reconstruction is RMSE = 0:021. (c) After 80 iterations, only 45 coefficients
are kept, most of them close to zero. One second-scale and one third-scale
coefficient appear enhanced. Entropy is 3.35 b.p.p., RMSE = 0:026.
(d) After 140 iterations, the algorithm has been able to code the image by
only 19 coefficients (including the 16 coefficients of the low-pass channel):
It has localized the three original Gabor functions. Entropy is 0.39 b.p.p.,
RMSE = 0:016.

zation stage is based on a contrast sensitivity function (CSF),
which gives the sensitivity of the overall visual system at each
frequency. The CSF proposed by Rust [20] has been imple-
mented with a low-pass correction for avoiding the low-pass
frequency decay of the CSF [4]. The CSF is indeed directly ap-
plied to the Fourier transform of the input image for giving all
frequencies the same perceptual weight [23]. All coefficients
are then quantized by the same nonlinear steps following the
method described in [25].

For evaluating the compression rate, an entropy calculation is
performed as

(9)

where is the quantization level, is its probability, is
the number of pixels of the image, and is the number of
coefficients of the transform domain. The factor
is due to the transform domain expansion. (Note that, because
every scale has different statistics, the entropy of each scale is
separately calculated before to be summed up; for the low-pass
filter, a basic DPCM is applied). Entropy is a measurement of
the amount of information contained in the source to be coded.
The difference of entropy between the linear and the local com-
petition pyramids can then be considered as a direct evaluation
of the redundancy reduction (with the condition that reconstruc-
tion qualities are similar). Moreover, the entropy gives the theo-
retical limit (in bit per pixels, b.p.p.) of the compression rate and
it is a good evaluation measure, although somewhat optimistic,
of the file size that can be produced by an efficient coder.
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Fig. 5. Compression results through the different methods. Every image is compressed at 2.08 b.p.p. excepted the image (c) at 7.39 b.p.p. (results are summarized
Table I). (a). The original image is a 256� 256 pixel detail of the ISO standard image “Bike.” (b) The compression by JPEG yields to a RMSE = :028.
(c) Compression through log-Gabor linear transform at 7.39 b.p.p. (RMSE = :031). (d) Compression by JPEG-2000 (RMSE = :017). (e) Compression by the
local-competition algorithm (RMSE = :033). Although the mathematical error is higher than with the linear transform, the perceptual quality improves so as
get close to the quality offered by JPEG, in particular, edges are better preserved than with the linear transform. (f) A detail of the images (a), (b), (d), and (e) is
zoomed by a factor of 2 (zoomed images are arranged in the same manner as images (a), (b), (d), and (e): upper-left is the original; upper-right is JPEG; lower-left
is JPEG-2000; lower-right is local competition).

The quality of the reconstructed image is mathematically
evaluated using RMSE. However, it is well known that such
mathematical error calculation does not correlate well with the
perceptual quality evaluated by human observers. Therefore,
direct observation will provide a better insight about the per-
formance of the scheme.

V. RESULTS

Some preliminarily compression results are here presented as
they offer a simple and direct evaluation of the method. Never-
theless, sparse Gabor wavelets would be of interest not only for
image compression, but also for image analysis since they could
provide an optimal localization and a nonredundant representa-
tion of the features.

Fig. 4 shows an example for a basic image containing only
three Gabor functions. The algorithm is able to localize these
Gabor functions and to reduce the entropy from 4.57 b.p.p. to
0.39 b.p.p. In the meantime, the RMSE stays stable and even
decreases from 0.021 to 0.016. It is to stress that in the linear
transform image details can never be represented as single iso-
lated Gabor functions, but always as mixture of them. The op-
timal localization can only be achieved by a sparse algorithm
(see Fig. 4).

In the following, the algorithm is applied to 256 256 pixels
images ( pixels) with 8-bit resolution. The trans-
form domain contains real coefficients, the ex-

TABLE I
COMPRESSION RESULTS FOR THE IMAGE “BIKE” (SEE ALSO FIGS. 5 AND 6)

pansion factor being then . It is worth noting
that the reconstruction is exact if the quantization stage is not
included.

For the 256 256 detail of the ISO standard image “Bike”
(see Fig. 5 and Table I), the linear transform needs 111 839
nonzero coefficients if we want a good quality of reconstruc-
tion. The competition algorithm with 220 iterations provides a
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Fig. 6. Results at high compression rates: all images are compressed at 0.57 bpp. (a). Original image “Bike.” (b) In the image compressed by JPEG, high-frequency
artifacts are observed, in particular, ringing and block artifacts (RMSE = :060). (c) Compression through linear transform (RMSE = :105). (d) In the image
compressed by JPEG-2000, ringing artifacts can be observed (RMSE = :046). (e) Compression through local competition. Artifacts consist principally of blurring
and the quality is close or even better than the JPEG one (RMSE = :056). Note the mathematical error is lower than with JPEG (see also results Table I). (f) Some
details are zoomed in the same manner as in Fig. 5.

very similar reconstruction quality with only 22 927 nonzero co-
efficients (a 80% reduction factor). Entropy decreases then from
7.39 b.p.p. to 2.08 b.p.p. (72% of reduction).

It is remarkable that in the transform domain edges are
strongly enhanced and at the same time their localizations
are refined. This is reflected on the fact that the magnitude of
coefficients located along the edges are weighted by a factor
up to 10 after finishing the competition algorithm (see the
coefficients represented in the transform domain Fig. 3). Such
edge enhancement also implies that, for the same quantization
steps, the local competition algorithm provides much higher
quality than the linear transform.

At higher compression rates (Fig. 6), the smooth shape of the
filters together with the lack of aliasing produces a lower level of
artifacts, appearing mainly blurring as the most significant arti-
fact. There is low ringing and minor presence of high-frequency
artifacts. One can argue that the proximity to biological models
also helps to make the distortions less visible.

In comparison with the classical linear transform, the local
competition method allows an important reduction of the
redundancy without quality losses. At the current stage of
implementation, the method does not outperform the JPEG-
2000 compression standard, but results seem to be close to the
ones offered by the former JPEG DCT-based having the ad-
ditional bonus of strongly limiting the level of high-frequency
artifacts.

Similar results have been obtained with classical images as
“Goldhill” (Table II and Fig. 7). The algorithm should be eval-

TABLE II
COMPRESSION RESULTS FOR THE IMAGE “GOLDHILL” (SEE ALSO FIG. 7)

uated through a larger set of images to validate the results. Nev-
ertheless, as the main purpose of this study is to establish the
feasibility of the method, such statistical evaluation of the algo-
rithm remains out of the current scope.

Gabor wavelets combined with the local competition algo-
rithm gather a number of interesting properties which can be
summarized as follows. First, the transformation is nonlinear,
invertible and allows an exact reconstruction. Second, the in-
verse transform is just performed by the Gabor wavelet linear in-
verse transform, what makes it very fast. Third, the information
contents and the redundancy are highly reduced. Fourth, visual
events (edges) are enhanced, sharper and thinner localized in
the transform domain. It can be argued that such local competi-
tion response presents a number of similarities with the masking
effect. Finally, the computational complexity
is reasonably low and can be even reduced to if Gabor
wavelets are implemented in the space domain through filters
of limited support.
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Fig. 7. Comparison between compression methods. Every image is here compressed at 1.55 b.p.p. (see also Table II). (a). Original image “Goldhill” (detail).
(b) Compression by JPEG (RMSE = :020). (c) Compression by log-Gabor linear transform (RMSE = :071). (d) Compression by JPEG-2000 (RMSE =
:014). (e) Image compressed by log-Gabor local competition transform (RMSE = 0:022). (f) Zoom of (a), (b), (d), and (e) image details. Arrangement is the
same as in Fig. 5.

VI. CONCLUSIONS AND FURTHER WORK

The local-competition Gabor wavelets transformation de-
scribed in this paper is composed by a linear Gabor wavelets
followed by a nonlinear iterative algorithm consisting of
local-competitions between coefficients which aim is reducing
the amount of information to be encoded. The resulting trans-
form is aliasing-free and provides exact reconstruction by the
linear inverse transform. Although the transformation begins
with an expansion of the number of coefficients by almost
a factor of 10, the proposed algorithm allows to reduce the
redundancy for achieving compression rates similar to those
given by the JPEG-DCT compression standard. Due to the low
level of artifacts, the good properties of Gabor functions and
the proximity of the method to Human Visual System models,
the perceptual quality is particularly preserved. Because the
amplitude is concentrated in a reduced number of coefficients,
edges appear thinner localized and enhanced in the transform
domain. It has also been seen that, in opposition to the linear
transform, the local competition algorithm allows for achieving
the theoretical optimal limit of localization (being able to
represent features by single isolated Gabor coefficients). It
is interesting to remark that the competition between coef-

ficients can be interpreted as a visual masking phenomena.
The enhancement of selected coefficients is counteracted by
decreasing the amplitude of their neighbors, what would reveal
a masking effect.

Although compression results are still below JPEG-2000
performances, further investigation can be pursued first for
image analysis, because the transform could permit to achieve
the unique properties of optimal localization and nonredun-
dant Gabor representation, and second for image compres-
sion where the low level of artifacts could make the method
appropriate for those applications where the highest percep-
tual fidelity is required as for example in medical imaging.
On the other hand, it is expected to obtain significantly
higher compression rates through the improvement of the co-
efficient selection strategy. In particular, additional criteria,
such as competitions between orientations or cooperations be-
tween spatially aligned Gabor functions, could be implemented
(both are described in [11] as “orientational competition” and
“long-range cooperation”). The long-range cooperation would
have the additional advantage to locate selected coefficients
along continuous curves. Such curves can be predictively en-
coded, e.g., by chain coding [19], which will increase, even
more, the compression rate.
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