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Abstract: Neural associative networks with plastic synapses have been proposed as com-
putational models of brain functions and also for applications, such as pattern recognition and
information retrieval. To guide biological models and to optimize technical applications, several
definitions of memory capacity have been used to measure the efficiency of associative memory.
Here we explain why the currently used performance measures bias the comparison between mod-
els and cannot serve as a theoretical benchmark. We introduce fair measures for information
theoretic capacity in associative memory that also provide a theoretical benchmark.

In neural networks two different types of manipulating synapses can be discerned, synaptic
plasticity, the change in strength of existing synapses and structural plasticity, the creation and
pruning of synapses. One of the new types of memory capacity we introduce permits to quantify
how structural plasticity can increase the network efficiency by compressing the network struc-
ture, for example, by pruning unused synapses. Specifically, we analyze operating regimes in the
Willshaw model in which structural plasticity can compress the network structure and push per-
formance to the theoretical benchmark: The amount C of information stored in each synapse can
scale with the logarithm of the network size rather than being constant as in classical Willshaw
and Hopfield nets (≤ ln 2 ≈ 0.7).

Further, the paper contains novel technical material; a capacity analysis of the Willshaw model
that rigorously controls for the level of retrieval quality, an analysis for memories with a non-
constant number of active units (where C ≤ 1/e ln 2 ≈ 0.53), and the analysis of the computational
complexity of associative memories with and without network compression.

Keywords: associative memory, distributed storage, Willshaw model, look-up-table, best
match problem

1 Introduction

1.1 Conventional versus associative memory

In the classical von Neumann computing architecture, computation and data storage is performed
by separate modules, the central processing unit and the random access memory, respectively
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(Burks et al., 1946). A memory address sent to the random access memory gives access to the
data content of one particular storage location. Associative memories are computing architectures
in which computation and data storage is not separated. For example, an associative memory can
store a set of associations between pairs of (binary) patterns {(uµ → vµ) : µ = 1, ...,M}. Similar
as in random access memory, a query pattern uµ entered in the associative memory can serve
as address for accessing the associated pattern vµ. However, the tasks performed by the two
types of memory differ fundamentally. Random access is only defined for query patterns that are
valid addresses, that is, for the set of u patterns used during storage. The random access task
consists of returning the data record at the addressed location (look-up). In contrast, associative
memories accept arbitrary query patterns ũ and the computation of any particular output involves
all stored data records rather than a single one. Specifically, the associative memory task consists
of comparing a query ũ with all stored addresses and returning an output pattern equal (or
similar) to the pattern vµ associated with the address uµ most similar to the query. Thus, the
associative memory task includes the random access task but is not restricted to it. It also includes
computations such as pattern completion, denoising or data retrieval using incomplete cues.

In this paper we will compare different implementations of associative memories: First, we will
study associative networks, that is, parallel implementations of associative memory in a network
of neurons in which associations are stored in a set of synaptic weights A between neurons using a
local Hebbian learning rule. Associative networks are closely related to Hebbian cell assemblies and
play an important role in neuroscience as models of neural computation for various brain structures,
for example neocortex, hippocampus, cerebellum, mushroom body (Hebb, 1949; Braitenberg, 1978;
Palm, 1982; Fransen and Lansner, 1998; Pulvermüller, 2003; Marr, 1971; Rolls, 1996; Kanerva,
1988; Marr, 1969; Albus, 1971; Laurent, 2002).

Second, we will study compressed associative networks, that is, networks with additional opti-
mal or suboptimal schemes to represent the information contained in the synaptic weight structure
efficiently. The analysis of this implementation will enable us to derive a general performance
benchmark and to understand the difference between structural and synaptic plasticity.

Third, we will study sequential implementation of associative memories, that is, computer
programs that implement storage (compressed or uncompressed) and memory recall for technical
applications and run on an ordinary von Neumann computer.

1.2 Performance measures for associative memory

To judge the performance of a computing architecture one has to relate the size of the achieved
computation with the size of required resources. The first popular performance measure for as-
sociative memories was the pattern capacity, that is, the ratio between the number of storable
association patterns and the number of neurons in the network (Hopfield, 1982). However, in two
respects the pattern capacity is not general enough. First, to compare associative memory with
sparse and with dense patterns, the performance measure has to reflect information content of
the patterns, not just the count of stored associations. Thus, performance should be measured by
the channel capacity of the memory channel, that is, the maximal mutual information (or transin-
formation) between the stored patterns vµ and the retrieved patterns v̂µ (Cover and Thomas,
1991; Shannon and Weaver, 1949): T (v1,v2, . . . ,vM ; v̂1, v̂2, . . . , v̂M ). Second, the performance
measure should take into account the true required storage resources rather than just the number
of neurons: The count of neurons does in general not convey the size of the connectivity structure
between neurons which is the substrate where the associations are stored in associative memories.
As we will discuss, there is not one universal measure to quantify the storage substrate in asso-
ciative memories. To reveal theoretical limitations as well as the efficiency of technical/biological
implementations of specific models of associative memory, different aspects of the storage substrate
will be critical. Here we define and compare three different performance measures for associative
memory models that deviate in how the required storage resources are taken into account.

1) We define (normalized) network capacity C as the channel capacity of the associative memory
with given network structure, normalized to the number of synaptic contacts between neurons that
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can accommodate synapses

C =
T (v1,v2, . . . ,vM ; v̂1, v̂2, . . . , v̂M )

#contacts
[bit/contact] . (1)

In particular, this definition assumes (in contrast to the following two definitions) that the network
structure is fixed and independent of the stored data. Definition 1 coincides with the earlier
definitions of information-theoretical storage capacity, for example, as employed in Willshaw et al.
(1969); Palm (1980); Amit et al. (1987b); Nadal (1991); Frolov and Murav’ev (1993); Palm and
Sommer (1996). The network capacity balances computational benefits with the required degree of
connectivity between circuit elements. Such a tradeoff is important in many contexts such as chip
design or neuroanatomy of the brain. Network capacity quantifies the resources required in a model
by just counting contacts between neurons, regardless of the entropy per contact. This property
limits the model class for which network capacity defines a benchmark. Only for associative
memories with binary contacts the network capacity is bounded by the value C = 1 which marks
the achievable optimum as absolute benchmark. For binary synapses the normalization constant
in the network capacity equals the maximum entropy or Shannon information IA of the synaptic
weight matrix A assuming statistically independent connections: C = T/max[IA]. However, in
general, network capacity has no benchmark value. Because it does not account for entropy per
contact, this measure tends to overestimate the performance of models relying on contacts with
high entropy and conversely it underestimates models that require contacts with low entropy (cf.,
Bentz et al., 1989).

2) To account for the actual memory requirement of an individual model, we define information
capacity as the channel capacity normalized by the total entropy in the connections CI = T/I(A).

CI =
T (v1,v2, . . . ,vM ; v̂1, v̂2, . . . , v̂M )

# bits of required physical memory
. (2)

The information capacity is dimensionless and possesses a model-independent upper bound CI
opt =

1 that defines a general benchmark for associative network models (Knoblauch, 2003a,b, 2005).
Note, that for efficient implementation of associative memory a large information capacity is
necessary but not sufficient. For example, models that achieve large information capacity with
low entropy connections rely on additional mechanisms of synaptic compression and decompression
to make the implementation efficient. Various compression mechanisms and their neurobiological
realizations will be proposed and analyzed in the following. Note further, that for models with
binary synapses, the information capacity is an upper bound of the network capacity: C ≤ CI ≤ 1
(because the memory requirement of the most wasteful model cannot exceed one bit per contact).

3) We define the synaptic capacity CS as the channel capacity of the associative memory
normalized by the number of non-silent synapses

CS =
T (v1,v2, . . . ,vM ; v̂1, v̂2, . . . , v̂M )

# non − silent synapses
[bit/synapse] , (3)

where non-silent synapses are chemical synapses that actually transmit signals to the postsynaptic
cell and have to be metabolically maintained.

There are two reasons that motivate definition 3: First, the principal cost of neural signaling
appears to be restoring and maintaining ionic balances following post-synaptic potentials (Lennie,
2003; Laughlin and Sejnowski, 2003; Attwell and Laughlin, 2001). This suggests that the most
critical resource for storing memories in the brain is the physiological maintenance of non-silent
synapses. Thus, our definition of synaptic capacity assesses the number of active synapses which
is commensurate with metabolic energy consumption involved in synaptic transmission.

Second, silent synapses are irrelevant for information retrieval in associative networks (although
they are required for storing new information) and could therefore be pruned and replaced by
synapses at more useful locations. This idea assumes that the network structure can be adapted
to the stored data and has close relations to theoretical considerations about structural plasticity
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(Stepanyants et al., 2002; Poirazi and Mel, 2001; Fusi et al., 2005). These ideas are also in line
with recent neurobiological findings suggesting that structural plasticity (including synaptogenesis
and dendritic and axonal growth and remodeling) is a common feature in the physiology of adult
brains (Woolley, 1999; Witte et al., 1996; Engert and Bonhoeffer, 1999; Lamprecht and LeDoux,
2004). Indeed, we have shown in further modeling studies (Knoblauch, 2009, 2006) how ongoing
structural plasticity and synaptic consolidation, for example induced by hippocampal memory
replay, can “place” the rare synapses of a sparsely connected network at the most useful locations
and thereby greatly increase the information stored per synapse in accordance with our new
performance measure CS .

The synaptic capacity is related to the previous definitions of capacity. First, synaptic capacity
is an upper bound of the network capacity C ≤ CS . Second, for binary synapses with low entropy
the synaptic capacity and the information capacity are proportional CS ≈ αCI : For r % mn non-
silent synapses in a m×n dimensional connectivity matrix A, we have IA ≈ mnI(r/mn) with the
single synapse entropy I(r/mn) ≈ r log(mn) (see appendix A) and therefore α = log(mn). Thus,
associative memories with binary low-entropy synapses can be implemented by synaptic pruning
and the upper benchmark is given by CS

opt = log(mn).
Finally, we give an example illustrating when and how the three different performance measures

are applicable: Consider storing 1 kilo bits of information in a neural network A of 100×100 binary
synapses and let 150 of the 10000 synapses have weight one. Then the network capacity of the
static fully-connected net is simply C = 1000/10000 = 0.1 bit per binary synapse. However,
the synaptic weight matrix A has only sparsely one-entries with a single synapse entropy of
I(150/10000) = 0.1124 bit. Then A can be compressed such that the memory requirements
for a computer implementation could decrease to only I(A) = 1124 bit. Thus, the information
capacity would be CI = 1000/1124 = 0.89. In a sparsely connected biological network endowed
with structural plasticity it would be possible to prune silent synapses, regenerate new synapses
at random locations, and consolidate synapses only at useful positions. Such a network could
get along with only 150 non-silent synapses such that the resulting synaptic capacity is CS =
1000/150 = 6.7 bits per synapse.

1.3 Associative memory models and their performance

How do known associative models perform in terms of the capacities we have introduced? The
network capacity was first applied to the Willshaw or Steinbuch model (Willshaw et al., 1969;
Palm, 1980), a feed forward neural associative network with binary neurons and synapses first
proposed by Steinbuch (1961), see section 2.2. The feed-forward “hetero-associative” Willshaw
model can achieve a network capacity of C = ln 2 ≈ 0.7 bits per contact. The Willshaw model
performs high compared to alternative neural implementations of associative memory with non-
binary synapses and feedback network architectures which became very popular in the eighties
(Hopfield, 1982, 1984; Hopfield and Tank, 1986; Hertz et al., 1991). The network capacity of the
original (non-sparse) Hopfield model stays with 0.14 bits/contact (Amit et al., 1987a,b) far below
the one for the Willshaw model (see Schwenker et al., 1996; Palm, 1991).

The difference in network capacity between the Willshaw model and the Hopfield model turns
out to be due to differences in the stored memory patterns. The Willshaw model achieves high
network capacity with extremely sparse memory patterns, that is, with a very low ratio between
active and nonactive neurons. Conversely, the original Hopfield model is designed for non-sparse
patterns with even ratio between active and nonactive neurons. Using sparse patterns in the feed-
forward Hopfield network with accordingly adjusted synaptic learning rule (Palm, 1991; Dayan
and Willshaw, 1991; Palm and Sommer, 1996) increases the network capacity to 1/(2 ln 2) ≈ 0.72
(Tsodyks and Feigel’man, 1988; Palm and Sommer, 1992). Thus, in terms of network capacity the
sparse Hopfield model outperforms the Willshaw model, but only very marginally. The picture is
similar in terms of synaptic capacity since the number of non-silent synapses is the same in both
models. However, the comparison between Willshaw and Hopfield model changes significantly
when estimating the information capacities. If one assumes a fixed number of bits h assigned to
represent each synaptic contact, the network capacity defines a lower bound on the information
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capacity by: CI ≥ C/h ≥ C/#{bits per contact}. Thus, for the Willshaw model (with h = 1)
the information capacity is CI ≥ 0.69. In contrast, assuming h = 2 in the sparse Hopfield model
yields a significantly lower information capacity of CI ≥ 0.72/2 = 0.36. In practice, h > 2 is used
to represent the synapses with sufficient precision which increases the advantage of the Willshaw
model even more.

1.4 The Willshaw model and its problems

Since the Willshaw model is not only among the simplest realizations of content-addressable
memory but is also promising in terms of information capacity it is interesting for applications as
well as for modeling the brain. However, the original Willshaw model suffers from a number of
problems that prevented broader technical application and limited its biological relevance. First,
the basic Willshaw model approaches C = ln 2 only for very large (i.e., not practical) numbers n of
neurons and the retrieval accuracy at maximum network capacity is low (Palm, 1980; Buckingham
and Willshaw, 1992). Various studies have shown, however, that modifications of the Willshaw
model can overcome this problem: Iterative and bidirectional retrieval schemes (Schwenker et al.,
1996; Sommer and Palm, 1999), Improved threshold strategies (Buckingham and Willshaw, 1993;
Graham and Willshaw, 1995), and retrieval with spiking neurons (Knoblauch and Palm, 2001;
Knoblauch, 2003b) can significantly improve network capacity and retrieval accuracy in small
memory networks.

But two other problems of the Willshaw model and its derivates remained so far unresolved.
The first open question is the “sparsity problem” that is, the question whether there is a way to
achieve high capacity outside the regime of extreme sparseness in which the number of one-entries
k in memory patterns is logarithmic in the pattern size n: k = c log n for a constant c (cf. Fig. 3).
In the standard model even small deviations from this sparseness condition reduce the network
capacity drastically. Although it was possible for some applications to find coding schemes that
fulfill the strict requirements for sparseness (Bentz et al., 1989; Rehn and Sommer, 2006) the
sparse coding problem cannot be solved in general. The extreme sparsity requirement is not only
problematic for applications (e.g., see Rachkovskij and Kussul, 2001) but also for brain modeling
because it is questionable whether neural cell assemblies that satisfy the sparseness condition are
stable with realistic rates of spontaneous activity (Latham and Nirenberg, 2004). At least for
sparsely connected networks realizing only a small given fraction P of the possible synapses, it is
possible to achieve non-zero capacities up to 0.53 ≤ C ≤ 0.69 for a larger but still logarithmic
pattern activity k = c log n where the optimal c → ∞ increases with decreasing P → 0 (Graham
and Willshaw, 1997; Bosch and Kurfess, 1998; Knoblauch, 2006).

The second open question concerning the Willshaw model is the “capacity gap” problem, that
is, the question why the optimal capacity C = ln 2 is separated by a gap of 0.3 from the theoretical
optimum C = 1. This question implicitly assumes that the optimal representation of the binary
storage matrix is the matrix itself, i.e., the distinction between the capacities C and CI defined
here is simply overlooked. For many decades the capacity gap was considered an empirical fact
for distributed storage (Palm, 1991). Although we cannot solve the capacity gap and sparsity
problems for the classical definition of C, we propose models optimizing CI (or CS) that can
achieve CI = 1 (or CS = log n) without requiring extremely sparse activity.

1.5 Organization of the paper

In section 2 we define the computational task of associative memory including different levels of
retrieval quality. Further we describe the particular model of associative memory under investi-
gation, the Willshaw model.

Section 3 contains a detailed analysis of the classical Willshaw model capturing its strengths
and weaknesses. We revisit and extend the classical capacity analysis yielding a simple formula
how the optimal network capacity of C = 0.69 bits/contact decreases as a function of the noise
level in the address pattern. Further we demonstrate that high values of network capacity are
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tightly confined to the regime of extreme sparseness and in addition that finite sized networks
cannot achieve high network capacity at a high retrieval quality.

In section 4 the capacity analysis is extended to the new capacity measures we defined in
the introduction, to information capacity and synaptic capacity. The analysis of information
capacity reveals two efficient regimes that curiously do not coincide with the regime of logarithmic
sparseness in which the network capacity is optimal. Interestingly, in the two efficient regimes,
the ultra-sparse regime (k < c log n) and the regime of moderate sparseness (k > c log n) the
information capacity becomes even optimal, that is, CI = 1. Thus, our analysis shows that the
capacity gap problem is caused by the bias inherent in the definition of network capacity. Further,
the discovery of a regime with optimal information capacity at moderate sparseness points to a
solution of the sparsity problem. The analysis of synaptic capacity reveals that if the number
of active synapses rather than the total number of synaptic contacts is the critical constraint,
the capacity in finite size associative networks increases from from less than 0.5 bit per synaptic
contact to about 5-10 bit per active synapse.

In section 5 we consider the computational complexity of the retrieval process. We focus on
the time complexity for a sequential implementation on a digital computer, but the results can
also be interpreted metabolically in terms of energy consumption since retrieval time is dominated
by the number of synaptic operations. In particular, we compare two-layer implementations of
the Willshaw model to three layer implementations or look-up tables with an additional hidden
“grandmother cell” layer.

After the discussion section 6 we give in appendix A an overview on binary channels. Then
appendix B reviews exact formulae for the analysis of the Willshaw models with fixed pattern
activity which is used to verify the results of this paper and to compute exact capacities for various
finite network sizes (see table 2). Appendix C points out some fallacies with previous analyses,
for example, relying on Gaussian approximations of dendritic potential distributions. Finally,
appendix D extends our theory to random pattern activity where it turns out C ≤ 1/(e ln 2).

2 Associative memory: Computational task and network

model

2.1 The memory task

Associative memories store information about a set of memory patterns. For retrieving memories
three different computational tasks have been discussed in the literature. The first task is famil-
iarity discrimination, a binary classification of input patterns into known and unknown patterns
(Palm and Sommer, 1992; Bogacz et al., 2001). The second task is autoassociation or pattern
completion, which involves to complete a noisy query pattern to the memory pattern that is most
similar to the query (Hopfield, 1982). Here we focus on the third task, heteroassociation, which is
most similar to the function of a random access memory: The memorized patterns are organized
in association pairs {(uµ )→ vµ) : µ = 1, ...,M}. During retrieval the memory performs asso-
ciations within the stored pairs of patterns. If a pattern uµ is entered, the associative memory
produces the pattern vµ (Kohonen, 1977). Thus, in analogy to random access memories, the
u-patterns are called address patterns and the v-patterns are called content patterns. However,
the associative memory task is more general than a random access task in that arbitrary query
patterns are accepted, not just the set of u-patterns. A query pattern ũ will be compared to all
stored u-patterns and the best match µ will be determined. The memory will return an output
pattern v̂ that is equal or similar to the stored content pattern vµ. Note that autoassociation
is a special case of heteroassociation (for uµ = vµ) and that both tasks are variants of the Best
Match Problem in Minsky and Papert (1969). Efficient solutions of the best match problem have
widespread applications, e.g. for cluster analysis, speech and object recognition, or information
retrieval in large databases (Kohonen, 1977; Prager and Fallside, 1989; Greene et al., 1994; Mu
et al., 2006; Rehn and Sommer, 2006).

Properties of memory patterns: In this paper we focus on the case of binary pattern vectors.
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The address patterns have dimension m, the content patterns have dimension n. The number of
one-entries in a pattern is called the pattern activity. The mean activity in each address pattern
uµ is k, which means that, on average, it has k one-entries and m − k zero-entries. Analogously,
the mean activity in each content pattern vµ is l. Typically, the patterns are sparse which means
that the pattern activity is much smaller than the vector size, e.g., k % m. For the analyses
we assume that the M pattern pairs are generated randomly according to one of the following
two methods. (1) In the case of fixed pattern activity each pattern has exactly the same activity.
For address patterns, for example, this means that each of the

(m
k

)

binary vectors of size m and
activity k has the same chance to be chosen. (2) In the alternative case of random pattern activity
pattern components are independently generated. For address patterns, for example, this means
that a pattern component uµ

i is one with probability k/m and zero otherwise, independently of
other components. It turns out that the distinction between constant and random pattern activity
is relevant only for address patterns, but not for content patterns. Binary memory patterns can
be distorted by two distinct types of noise: add noise means that false one entries are added and
miss noise means that one-entries are deleted. The rates of these error types in query and output
patterns determine two key features of associative memories, noise tolerance and retrieval quality.

Noise tolerance: To assess how much query noise can be tolerated by the memory model, we
form query patterns ũ by adding random noise to the u-patterns. For our analyses in the main text
we assume that a query pattern ũ has exactly λk “correct” and κk “false” one entries. Thus, query
patterns have fixed pattern activity (λ + κ)k (see appendix D for random query activity). Query
noise and cross-talk between the stored memories can lead to noise in the output of the memory.
Output noise expresses in deviations between retrieval output v̂ and the stored v-patterns.

Retrieval quality: Increasing the number M of stored patterns will eventually increase the
output noise introduced by cross-talk. Thus, in terms of the introduced capacity measures there
will be a tradeoff between memory load that increases capacity and the level of output noise that
decreases capacity. In many situations, a substantial information loss due to output errors can be
compensated by the high number of stored memories and the capacity is maximized at high levels
of output errors. For applications, however, this low-fidelity regime is not interesting and one has
to assess capacity at specified low levels of output noise. Based on the expectation Eµ of errors
per output pattern or Hamming distance h(vµ, v̂µ) :=

∑n
j=1 |v

µ
j − v̂µ

j |, we define different retrieval
qualities (RQ) that will be studied,

• RQ0: Eµh(vµ, v̂µ) = lp10 + (n − l)p01 ≤ ρ0n

• RQ1: Eµh(vµ, v̂µ) = lp10 + (n − l)p01 ≤ ρ1l

• RQ2: Eµh(vµ, v̂µ) = lp10 + (n − l)p01 ≤ ρ2

• RQ3: Eµh(vµ, v̂µ) = lp10 + (n − l)p01 ≤ ρ3/M

where p10 := pr[v̂µ
j = 0|vµ

j = 1] and p01 := pr[v̂µ
j = 1|vµ

j = 0] are the component error probabili-
ties, and ρ0, ρ1, ρ2, ρ3 are (typically small) constants. Note, that the required quality is increasing
from RQ0 to RQ3. Asymptotically for n → ∞, RQ0 requires small constant error probabilities,
RQ1 requires the expected number of output errors per pattern to be a small fraction of pattern
activity l, RQ2 requires the expected number of output errors per pattern to be small, and RQ3
requires the total number of errors (summed over the recall of all M stored patterns) to be small.
Making these distinctions explicit allows a unified analysis of associative networks and reconciles
discrepancies between previous works (cf. Nadal, 1991).

2.2 The Willshaw model

To represent the described associative memory task in a neural network, neurons with binary
values are sufficient, although for the computation neurons with continuous values can be beneficial
(Anderson et al., 1977; Anderson, 1993; Hopfield, 1984; Treves and Rolls, 1991; Sommer and Dayan,
1998). The patterns uµ and vµ describe the activity states of two populations of neurons at time
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µ. In neural associative memories the associations are stored in the synaptic matrix or memory
matrix.

Storage: In the Willshaw or Steinbuch model (Willshaw et al., 1969; Steinbuch, 1961; Palm,
1980, 1991) not only neurons but also synapses have binary values. The storage and retrieval
processes work as follows. The pattern pairs are stored hetero-associatively in a binary memory
matrix A ∈ {0, 1}m×n (see Fig. 1), where

Aij = min

(

1,
M
∑

µ=1

uµ
i · vµ

j

)

∈ {0, 1} . (4)

The network architecture is feedforward, thus, an address population u consisting of m neurons
projects via the synaptic matrix A to a content population v consisting of n neurons. Note that
the memory matrix is formed by local Hebbian learning, that is, Aij is a (nonlinear) function of
the activity values in the pre- and postsynaptic neuron ui and vj regardless of other activity in
the network. Note further, that for the auto-associative case u = v (i.e., if address and content
populations are identical), the network can be interpreted as an undirected graph with m = n
nodes and edge matrix A where patterns correspond to cliques of k = l nodes.

Figure 1 about here

Retrieval: Stored information can be retrieved by entering a query pattern ũ. First, a vector-
matrix-multiplication yields the dendritic potentials x = ũ · A in the content neurons. Second, a
threshold operation in each content neuron results in the retrieval output v̂,

v̂j =

{

1 , xj = (
∑m

i=1 ũiAij) ≥ Θ
0 , otherwise

. (5)

A critical prerequisite for high retrieval quality is the right choice of the threshold value Θ: Too
low values will lead to high rates of add-errors whereas too high values will result in high rates of
miss-errors. A good threshold value is the number of correct one elements in the address pattern
because it yields the lowest rate of add errors in the retrieval while still avoiding miss errors
entirely. Depending on the types of errors present in the address, this threshold choice can be
simple or rather difficult.

For the cases of errorfree addresses (λ = 1 and κ = 0) and pattern part retrieval, that is, when
the address contains miss errors only (0 < λ ≤ 1 and κ = 0) the optimal threshold value is a
simple function of the address pattern Θ = |ũ| :=

∑m
i=0 ũi. This threshold value was used in the

original Willshaw model and therefore we will refer to it as Willshaw threshold. This threshold
setting can be easily implemented in technical systems and is also biologically very plausible, for
example based on feed-forward inhibition via “shadow” interneurons (cf. Knoblauch and Palm,
2001; Knoblauch, 2003b, 2005; Aviel et al., 2005).

For the general case of noisy addresses including miss- and add-errors (0 < λ ≤ 1, κ ≥ 0)
the optimal threshold is no simple function of the address pattern ũ. In this case, the number of
correct ones is uncertain given the address and therefore the threshold strategies have to estimate
this value based on priori knowledge of κ and λ.

2.3 Two-layer associative networks and look-up tables

Essentially, the Willshaw model is a neural network with a single layer of neurons v that receive
inputs from an address pattern u. A number of memory models in the literature can be regarded as
extension of the Willshaw model by adding an additional intermediate layer of neurons w (Fig. 2).
If for each association to be learned, uµ → vµ, one would activate an additional random pattern
wµ, the two memory matrices A1 and A2 would store associations uµ → wµ and wµ → vµ,
respectively. Thus, the two-layer memory would function analogously to the single layer model
(see eq. 4). However, the two-layer model can be advantageous if address and content patterns
are non-random or non-sparse because in such cases the performance of the single layer model is
severely impaired (Knoblauch, 2005; Bogacz and Brown, 2003). The advantage of two-layer models
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is related to the fact that single-layer perceptrons can learn only linearly separable mappings uµ →
vµ, while arbitrary mappings require at least a second (hidden) layer. Instead of choosing random
patterns wµ, one can also try to optimize the intermediary pattern representations. Another
interesting model of a two-layer memory is the Kanerva network where the first memory matrix
A1 is a fixed random projection, and only the second synaptic projection A2 is learned by Hebbian
plasticity (Kanerva, 1988). In addition, two-layer memories are neural implementations of look-up
tables if the intermediary layer w has a single active (grandmother) neuron for each association to
be stored. In this case, the two memory matrices A1 and A2 degenerate to simple look-up-tables
where the µ-th row contains the µ-th pattern, respectively. In section 5 we will compare the single
layer model to the two layer (grandmother cell or look-up-table) model. Surprisingly, we will find
that performance of the grandmother cell model is superior to that of the single layer model in
many cases. This is true at least for technical applications, while for biology the large number of
neurons required in the middle layer may be unrealistic, even when it would be possible to select
single cells in a WTA like manner.

Figure 2 about here

3 Analysis of network capacity

3.1 Asymptotic analysis of network capacity

This paragraph summarizes and extends the classical asymptotic analysis of the Willshaw model
(Willshaw et al., 1969; Palm, 1980). The fraction of one-entries in the memory matrix p1 :=
∑

ij Aij/nm is a monotonic function of the number of stored patterns and will therefore be
referred to as matrix load or memory load. The probability that a physically present synapse
is not activated by the association of one pattern pair is 1 − kl/mn. Therefore, after learning M
patterns the matrix load is given by:

p1 = 1 −
(

1 −
kl

mn

)M

, (6)

It is often convenient to use (6) to determine the number of stored patterns

M =
ln(1 − p1)

ln(1 − kl/mn)
≈ −

mn

kl
ln(1 − p1), (7)

where the approximation is valid for kl % mn.
The general analysis of retrieval includes queries ũ that contain both noise types, that is, λ · k

“correct” and κ · k “false” one-entries (0 < λ ≤ 1; 0 ≤ κ). For purposes of clarity, we will start
with the analysis of pattern part retrieval where the address pattern contains no add noise, that is,
κ = 0 (for investigations of the general case see section 4.5). For pattern part retrieval with fixed
query activity and Willshaw threshold Θ = |ũ| = λk the probability of add noise in the retrieval
is:

p01 = p(v̂i = 1|vµ
i = 0) >

≈ p1
λk. (8)

For exact formulae see eqs. 57-59 in appendix B. For random query activity see appendix D.
The following analysis is based on the binomial approximation eq. 8 which assumes independently
generated one-entries in a subcolumn of the memory matrix. Although this is obviously not true for
distributed address patterns with k > 1, the approximation is sufficiently exact for most parameter
ranges. Knoblauch (2007, 2008) shows that eq. 8 is generally a lower bound and becomes exact at
least for k = O(n/ log4 n).

With the error probability p01 one can compute the mutual information between the memory
output and the original content. The mutual information in one pattern component is T (l/n, p01, 0)
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(see eq. 47). Storing Mn such components, the network capacity C(k, l,m, n, λ,M) of eq. 1 is

C =
M

m
T

(

l

n
, p01, 0

)

≤
ldp01 ln(1 − p1)

k
(9)

≤ λ · ldp1 · ln(1 − p1) ≤ λ ln 2 (10)

where we used the bound eq. 48 and the binomial approximation eq. 8. The first equality is
strictly correct only for random activity of address patterns, but still a tight approximation for
fixed address pattern activity. The first bound becomes tight at least for (l/n)/p01 → 0 (see
eq. 48), the second bound for k ∼ O(n/ log4 n) (see references above), and the third bound for
p1 = 0.5 and M ≈ 0.69mn/kl.

Thus, the original Willshaw model can store at most C = ln 2 ≈ 0.69 bits per synapse for λ = 1
(however, for random query activity we achieve at most C = 1/(e ln 2) ≈ 0.53 bits per synapse,
see appendix D). The upper bound can actually be reached for sufficiently sparse patterns, l % n,
k % m, and balanced memory matrix with an equal number of active and inactive synapses.
Strictly speaking, the requirement (l/n)/p01 % 1 implies only low retrieval quality with the
number of false one entries exceeding the number of correct one entries l. The following section
shows that the upper bound can also be reached at higher levels of retrieval quality.

3.2 Capacity analysis for defined grades of retrieval quality

To ensure a certain retrieval quality we bound the error probability p01 by p01ε,

p01 ≤ p01ε :=
εl

n − l
⇔ λ ≥ λε :≈

ln εl
n−l

k ln p1ε
, (11)

where we call ε > 0 the fidelity parameter. For the approximation of minimal address pattern
fraction λ we used again the binomial approximation eq. 8. Note that for p10 = 0 and constant
ε this condition ensures retrieval quality of type RQ1 (see section 2.1). More generally, to ensure
retrieval quality RQ0-3 at levels ρ0 − ρ3, the fidelity parameter ε has to fulfill the following
conditions:

• RQ0: ε ≤ ρ0
n
l

• RQ1: ε ≤ ρ1

• RQ2: ε ≤ ρ2/l

• RQ3: ε ≤ ρ3
1

Ml .

By storing more and more patterns the matrix load p1ε will increase and the noise level λε

that can be afforded in the address to achieve the specified retrieval quality will drop. Therefore,
the maximum number of patterns that can be stored is reached at the point where λε reaches
the required fault tolerance: λε = λ (eq. 11). Accordingly, the maximum matrix load (and the
optimal activity of address patterns) is given by

p1ε ≈
(

εl

n − l

)
1

λ·k

(

⇔ k ≈
ld εl

n−l

λldp1ε

)

, (12)

Thus, with eqs. 7,9 we obtain the maximal number of stored patterns, the pattern capacity Mε

and the network capacity Cε(k, l,m, n, λ, ε) ≈ Mεm−1T (l/n, εl/(n − l), 0),

Mε ≈ −λ2 · (ldp1ε)
2 · ln(1 − p1ε) ·

k

l
·

mn

(ldn−l
ε·l )2

. (13)

Cε ≈ λ · ldp1ε · ln(1 − p1ε) · η (14)

10



where

η :=
T

(

l
n , εl

n−l , 0
)

− l
n ld εl

n−l

=
T

(

l
n , εl

n−l , 0
)

I( l
n )

·





1

1 + ln ε
ln(l/n) −

ln(1−l/n)
ln(l/n)

+
(n − l)ld(1 − l/n)

lld(εl/n)



 (15)

≈
1

1 + ln ε
ln(l/n)

. (16)

The approximation eq. 16 is valid for small ε, l/n % 1: For high-fidelity recall with small ε % 1
the error eI of approximating T by I becomes negligible and even T/I = (1− eI) → 1 for l/n → 0
(see eq. 51 for details). For sparse content patterns with l/n % 1 we have I(l/n) ≈ −(l/n)ld(l/n)
(see eq. 43) and the right summand in the brackets can be neglected. Finally, the left summand
in the brackets of eq. 15 becomes 1 for ln ε/ ln(l/n) → 0.

The next two figures illustrate results of this analysis with an example, a Willshaw network
with a square shaped memory matrix (m = n). The address and content patterns have same
activity (k = l) and the input is noiseless, that is, λ = 1, κ = 0. Figure 3 presents results for a
network with n = 100000 neurons, a number that corresponds roughly to the number of neurons
below one square millimeter of cortex surface (Braitenberg and Schüz, 1991; Hellwig, 2000). Panel
a) shows that high network capacity is assumed in a narrow range around the optimum pattern
activity kopt = 18 and decreases rapidly for larger or smaller values. For the chosen fidelity level
ε = 0.01 the maximum network capacity is Cε ≈ 0.5 which is significantly below the asymptotic
bound. The dashed line shows how the memory load p1ε increases monotonically with k from 0
to 1. The maximum network capacity is assumed near p1ε = 0.5, similar as in the asymptotic
calculation. Note that the number of patterns Mε becomes maximal at smaller values p1ε < 0.5
(Mε ≈ 29.7 · 106 for k = 8 and p1 ≈ 0.17).

Figure 3 about here

Fig.3b explores the case where pattern activity is fixed to the value k = 18 that was opti-
mal in panel a) for variable levels of fidelity. The most important observation is that not only
the maximum number of patterns, but also the maximum network capacity is obtained for low
fidelity, C ≈ 0.64 occurs for ε ≈ 1.4. This means that in a finite sized Willshaw network a high
number of stored patterns outbalances the information loss due to the high level of output errors,
an observation made also by Nadal and Toulouse (1990) and Buckingham and Willshaw (1992).
However, most applications require low levels of output errors and therefore cannot use the max-
imum network capacity. Technically spoken the pattern capacity M is unbounded since Mε → ∞
for ε → n/l − 1. However, this transition corresponds to p1ε → 1 and p01ε → 1 which means
that the stored patterns cannot be retrieved anymore. The contour plots in Figs. 3c-e give an
overview how network capacity, memory load and the maximum number of stored patterns vary
with pattern activity and fidelity level. High-quality retrieval with small ε require generally larger
assembly size k. For fixed fidelity level ε, optimal k for maximal M is generally smaller than
optimal k for maximal C (the latter has about double size; cf. Knoblauch et al., 2008).

3.3 Refined asymptotic analysis for large networks

The last section has delineated a theory for the Willshaw associative memory that predicts pattern
capacity and network capacity for finite network sizes and for defined levels of retrieval quality.
Here we use this theory to specify the conditions under which large networks reach the optima
of network capacity Cε → λ ln 2 and pattern capacity Mε. We focus on the case k ∼ l which
applies for autoassociative memory tasks and for heteroassociative memory tasks if the activities
of address and content patterns are similar. The results displayed in Fig. 4 can be compared to the
predictions of the classical analysis recapitulated in section 3.1. Several important observations
can be made:

• First, the upper bound of network capacity can in fact be reached by eq. 14 for arbitrary
small constant ε, that is, at retrieval quality grade RQ1 at arbitrary high fidelity: Cε → λ ln 2
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for m,n → ∞ and p1ε → 0.5. The latter condition requires logarithmic pattern sparseness
k = ldn/λ (see eq. 12).

• Second, at retrieval quality grade RQ1, network capacity and pattern capacity assume their
optima for somewhat different parameter settings. The pattern capacity Mε (eq. 13) peaks at
a memory load p1ε ≈ 0.16 which also requires logarithmic sparseness in the memory patterns,
however, with a smaller constant than for maximizing network capacity: k = ldn/(λld6.25).
The optimal pattern capacity grows with mn/(log n)2 (see eq. 13).

• Third, the optimal bound of network capacity is only approached for logarithmic sparseness
k ∼ log n, the asymptotically optimal choice of sparseness. For weaker sparseness (e.g.,
k ∼

√
n) or stronger sparseness (e.g., k = 5) the network capacity peaks at some finite

network size, and vanishes asymptotically. The rate of convergence towards the asymptotic
capacity ln 2 depends strongly on the required level of fidelity. For high fidelity (e.g., ε = 0.01)
this convergence is quite slow, for low fidelity much faster (e.g., ε = 1).

Figure 4 about here

With regard to the first statement it is interesting to ask for what grades of retrieval quality
higher than RQ1 the upper bound of network capacity C = λ ln 2 can be achieved. The first
statement relies on η → 1 (in eq. 14) which requires ε > l/n, a condition which is always fulfilled
for the retrieval quality regimes RQ0 and RQ1. It also holds for RQ2 (requiring ε ∼ 1/l) if l is
sufficiently small, for example l/nd → 0 for any d > 0. In particular, this ansatz describes the
usual case of logarithmic sparseness k ∼ l and k ∼ log n. However, in the strictest “no error”
quality regime RQ3 the upper bound of network capacity is unachievable because it requires
ε ∼ 1/(Ml) = k/(mn ln(1− p1)) ∼ k/(mn) which is incompatible with η → 1 or ln ε/ ln(l/n) → 0.
For example, assuming m ∼ n yields η → 1/3 and therefore the upper bound of network capacity
for RQ3 becomes C = (λ ln 2)/3 ≤ 0.23. Note that this result is consistent with the Gardner
bound 0.29 (Gardner and Derrida, 1988) and suggests that previous estimates of RQ3 capacity
are wrong or misleading. For example, the result 0.346 computed by Nadal (1991) is correct only
for very small content populations, for example n = 1, where ε ∼ k/m and η → 1/2.

In summary, the Willshaw model achieves the optimal capacity ln 2 (or 1/e ln 2 for random
query activity, see appendix D) at surprisingly high grades of retrieval quality – recall that the
Hopfield model achieves nonzero capacity only in the retrieval quality regime RQ0 (Amit et al.,
1987a). However, to date no (distributed) associative memory model is known that equals look-
up tables in their ability to store an arbitrary large number of patterns without any errors, see
section 5). Note that our method of asymptotic analysis is exact, relying only on the binomial
approximation eq. 8, which has recently been shown to be accurate for virtually any sub-linearly
sparse patterns (see Knoblauch, 2007, 2008, see also appendix C for linearly sparse and non-
sparse patterns). Furthermore, we are able to compute exact capacities even for small networks
and, thus, to verify our asymptotic results (see appendices B,D and table 2). In contrast, many
classical analyses, for example based on statistical physics (e.g., Tsodyks and Feigel’man, 1988;
Golomb et al., 1990), become reliable only for very large networks, assume an infinite relaxation
time, and apply only to auto-association with a recurrent symmetric weight matrix. However,
some more recent attempts apply non-equilibrium methods for studying the behavior of recurrent
neural networks with symmetric or asymmetric connections far from equilibrium and relaxation
(for review see Coolen, 2001a,b). Alternative approaches based on signal-to-noise theory (e.g.,
Dayan and Willshaw, 1991; Palm and Sommer, 1996) are better suited for finite feed-forward
networks with asymmetric weight matrix but require Gaussian assumptions on the distribution of
dendritic potentials which may lead to inaccurate results even for very large networks, in particular
if patterns are very sparse or non-sparse (see appendix C). Before we proceed to compute synaptic
capacity and information capacity for the Willshaw network, in the following we characterize
promising working regimes where the synaptic matrix has low entropy and therefore compression
is possible.
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3.4 Regimes of balanced, sparse and dense potentiation

Historically, most analyses and model extensions of the Willshaw model have focused on the regime
of balanced potentiation with a balanced memory load 0 < p1ε < 1 in which the network capacity
becomes optimal (Willshaw et al., 1969; Palm, 1980; Nadal, 1991; Buckingham and Willshaw,
1992; Sommer and Palm, 1999). Our extended analysis can reveal the optimal values p1ε for
arbitrary parameter settings and it certainly suggests to avoid the regimes p1ε → 0 or p1ε → 1:
Eqs. 10,14 and Fig. 4a illustrate that in these regimes the network capacity drops to zero. It is
easy to show that in the limit n → ∞ the following equivalences holds:

Cε > 0 ⇔ k ∼ log n ⇔ 0 < p1ε < 1. (17)

To see this, we can rewrite eq. 12 as p1ε = exp(−d/λc) with c > 0, logarithmic k = c ln n, and
d := − ln(εl/n)/ ln n. At retrieval quality grades RQ2 and RQ3 d is a constant. Even at RQ1,
d remains typically constant for sublinear l(n) (for example, d = 1 if l grows not faster than a
polynomial in log n). Then varying c one can obtain asymptotically for p1ε all possible values
in (0; 1), and correspondingly for Cε all values in (0; ln 2]. Since p1ε is monotonically increasing
in k we conclude that in the limit n → ∞, for d = − ln p01ε/ ln n ∼ 1 and sublinear l(n) the
equivalences 17 hold.

Thus, non-zero Cε is equivalent to logarithmic k(n) ∼ log n and corresponds to the regime
of balanced potentiation with p1ε ∈ (0; 1). For sublogarithmic k(n) the potentiated (1-)synapses
in the memory matrix A are sparse, that is, p1ε → 0, and for supralogarithmic k(n) potentiated
synapses are dense, that is, p1ε → 1. Both cases, however, imply C → 0. These cases of sparse
and dense potentiation, that appear inefficient in the light of network capacity, we will reevaluate
in the following using the performance measures of information capacity and synaptic capacity
that we have introduced in section 1.2.

4 Analysis of information capacity and synaptic capacity

4.1 Information capacity

The information capacity (eq. 2) relates the stored (retrievable) information to the memory re-
sources required by an implementation of an associative memory. Thus, information capacity
measures how well a specific implementation exploits its physical substrate. For example, the
standard implementation of a Willshaw network allocates one bit of physical memory for each of
the mn synapses. Therefore, for a matrix load of p1 = 0.5 the information capacity is identical to
the network capacity studied in section 3. However, if the memory load is p1 .= 0.5, implementa-
tions that include a compression of the memory matrix can achieve an information capacity that
exceeds the network capacity.

Optimal compression of the memory matrix A by Huffman (1952) or Golomb (1966) coding
(the latter works in cases p1 → 0 or p1 → 1) can decrease the required physical memory by a factor
according to the Shannon information I(p1) := −p1ldp1 − (1 − p1)ld(1 − p1) of a synaptic weight
(see appendix A). 1 Thus, with eq. 14 the information capacity CI for optimal compression writes

CI
ε :=

Cε

I(p1ε)
≈ λ

ln p1ε ln(1 − p1ε)

−p1ε ln p1ε − (1 − p1ε) ln(1 − p1ε)
η. (18)

Eq. 18 reveals the surprising result that in the optimally compressed Willshaw model the bal-
anced regime is outperformed by the dense and sparse regimes which both allow to approach
the theoretical upper bound of information capacity CI → λη. For small p1ε → 0 we have
I(p1ε) ≈ −p1εldp1ε and ln(1 − p1ε) ≈ −p1ε, and therefore CI → λη. For large p1ε → 1 we have
I(p1ε) ≈ −(1−p1ε)ld(1−p1ε) and therefore also CI ≈ (ln p1ε)/(1−p1ε) → λη. Thus, a high-fidelity

1This compression factor is approximate since it assumes independence of the matrix elements which is not
fulfilled for the storage of distributed patterns. Nevertheless, numerical simulations described in Knoblauch et al.
(2008) show that the actual compression factor comes very close to I(p1).
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asymptotic information capacity of λ ∈ (0; 1] is possible for sparse and dense potentiation, i.e.,
p1ε → 0 or p1ε → 1, for n → ∞ and η → 1 (see section 3.4; cf., Knoblauch, 2003a).

This finding is nicely illustrated by the plots of network and information capacity in Figs. 5
and 6. The classical maximum of the network capacity C in the balanced regime coincides with
the local minimum of the information capacity CI . For all values p1ε .= 0.5 the information
capacity surmounts the network capacity and reaches in the sparse and dense regime the theoretical
optimum CI = 1. Although networks of reasonable size cannot achieve the theoretical optimum
at high retrieval quality, the capacity increases are still considerable, in particular for very sparse
activity (e.g., k = 2). Moreover, there is a wide range in pattern activity k in which the information
capacity CI exceeds the network capacity C assumed at its narrow optimum. Thus, evaluating the
capacity of compressed networks more appropriately by CI avoids the “sparsity” and “capacity
gap” problems of C discussed in section 1.4.

Figure 5 about here

Figure 6 about here

A simple alternative method of synaptic compression would be to form target lists of sparse or
dense matrix entries. One can simply store for each address neuron i an index list of postsynaptic
targets or nontargets, for p1 < 0.5 the list represents the one-entries in the memory matrix, for
p1 > 0.5 the zero-entries. For the latter case one can adapt the retrieval algorithm in an obvious
way such that each 0-synapse decreases the membrane potential of the postsynaptic neuron (see
Knoblauch, 2003b, 2006). The target list requires min(p1, 1−p1)mnldn bits of physical memory if
we neglect the additional memory required for m “memory pointers” linking the target lists to the
memory matrix2. Thus, for large n the resulting compression factor is min(p1, 1 − p1)ldn. With
eq.14 this yields the information capacity for the Willshaw model with synaptic target list:

CI′

ε :=
Cε

min(p1ε, 1 − p1ε)ldn
≈

ldp1ε · ln(1 − p1ε)

min(p1ε, 1 − p1ε)ldn
. (19)

Fig. 5 shows that the information capacity for target list compression CI′

stays far below the
information capacity for optimal compression CI . As the asymptotic analyses below will show,
target list compression achieves the theoretical optimum CI′

= 1 only for dense potentiation with
nearly linear k(n). Nevertheless, target list compression achieves CI′

> C for very small or quite
large k (e.g., k ≤ 5, k ≥ 177 for n = 105). The next section shows that CI′

has characteristics
very similar to synaptic capacity CS which is more relevant for biological networks.

4.2 Synaptic capacity

Information capacity is clearly important for technical implementations of associative memories
on sequential standard computers. But for the brain and also parallel VLSI hardware it might
be not the information content of the required physical memory that really matters. Rather,
what matters may be the physiological resources necessary for the physical implementation of the
network. For example, the synaptic capacity defined in eq. 3 measures the mutual information
in the memory task per functional synapse. Thus the physiological resources taken into account
are the number of functional synapses, that is, the one entries in the synaptic matrix while we
assume that silent synapses, the zero entries, are metabolically cheap and could even be pruned.
The synaptic capacity of the Willshaw model can be written as

CS
ε :=

Cε

min(p1ε, 1 − p1ε)
= CI′

ε ldn ≈ λ
ldp1ε · ln(1 − p1ε)

min(p1ε, 1 − p1ε)
η (20)

with η from eqs. 16,15. Note that CS and CI′

in eq. 19 are proportional by a factor of ldn.
Another similarity to implementations with target list compression is that in the range of dense
connectivity, that is p1 > 0.5, the synaptic capacity counts the synaptic resources required by

2This is negligible for large n if on average a matrix row contains many sparse entries, min(p1, 1 − p1)n " 0,
i.e., if a neuron has many functional synapses which is usually true.
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an inhibitory network implementation that represents the less frequent (1 − p1)mn zero-entries
in the memory matrix with functional synapses (cf., Knoblauch, 2003b, 2006). Such inhibitory
implementations of associative memory have been proposed for the cerebellum (Kanerva, 1988;
Marr, 1969; Albus, 1971) and might also be relevant for the basal ganglia (Wilson, 2004).

Fig. 5a shows for m = n = 105 that the Willshaw model can store up to 8.5 bits per synapse
for k = l = 2 which exceeds the asymptotic network capacity C ≤ 0.7 bits per synapse by more
than one order of magnitude. As for information capacity, the very steep capacity increase for
ultra-sparse patterns, k → 2, is remarkable.

For moderately sparse patterns and dense potentiation (p1ε → 1) our analysis eq. 20 suggests
synaptic capacities of up to CS ≈ 4.9 bits per synapse for k = 9281. However, it turns out that the
underlying approximation eq. 8 of CS and CI can become inaccurate for large cell assemblies (see
appendices B,C). Unfortunately, the true values of CS are significantly smaller and the maximum
occurs for smaller k (see also Table 2 for λ = 0.5). The reason for this is that CS is very sensitive
to the compression factor 1 − p1ε. Thus, even if the true value of Mε is only a little bit smaller
than suggested by eq. 13, then the corresponding value of 1−p1ε and therefore the compressibility
of the memory matrix can be strongly affected for p1ε → 1 (see appendix C for more details; see
also section 4.4). In contrast, this effect is not present for ultra-sparse patterns with p1ε → 0.

Figs. 6a and 5b suggest that CS → ∞ for p1ε → 0 or p1ε → 1 and very low fidelity ε → ∞,
respectively. This means in principle it is possible to store an infinite amount of information per
synapse. Strictly speaking this is true only for infinitely large networks with n → ∞ because the
synaptic capacity CS is limited by the the number of possible spatial locations, i.e., CS ≤ ldn.
Note that this is the essential difference between the concepts of synaptic capacity and network
capacity: The maximum of network capacity per fixed synapse is determined only by the number
of potential synaptic weight states induced by Hebbian plasticity (0 or 1 in the Willshaw model).
In contrast, the maximum of synaptic capacity additionally considers the number of potential
locations where the synapse can be placed by structural plasticity.

The following two sections derive explicit formulae for storage capacities and memory load for
the regimes of sparse and dense potentiation (see section 3.4). Table 1 summarizes all the results
for the case m = n → ∞, k = l, noiseless addresses λ = 1 and κ = 0, and retrieval quality grade
RQ1 with constant ε ∼ 1.

Table 1 about here

4.3 Capacities for sparse synaptic potentiation

For sparse synaptic potentiation we have p1ε → 0 and typically sub-logarithmic pattern activity
k with k/ldn → 0 (see section 3.4; cf. Table 1). With − ln(1 − p1ε) ≈ p1ε and I(p1ε) ≈ −p1εldp1ε

we obtain from eqs. 12, 7, 14, 18, 19, and 20 for large m,n → ∞

Mε ≈
(

εl

n − l

)
1

λk mn

kl
≈ ε

1

λk
m

k

(n

l

)1− 1

λk
(21)

Cε ≈

(

εl
n−l

)
1

λk
ld εl

n−l

k
η → 0 (22)

CI
ε ≈ λη ≤ λ (23)

CI′

ε ≈
ld εl

n−l

kldn
· η ≤ 1/k (24)

CS
ε ≈

ld εl
n−l

k
· η ≤

ldn

k
(25)

The second approximation in eq. 21 is valid only for l % n. Thus, for sparse potentiation we
can still store a very large number of ultra-sparse patterns where M scales almost with mn for
large k. However, note that for given m,n maximal M is obtained for logarithmic k (cf. Fig.4a).
The classical network capacity C vanishes for large n, but for optimal compression we obtain an
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information capacity with CI → 1. For simple target lists (see above) the information capacity
approaches CI′ → 1/k. Thus CI′

is non-zero only for small constant k. For constant k = 1
we have trivially CI′ → 1. However, this result is not very interesting since for k = 1 we have
not really distributed storage. For k = 1 there are only M = m possible patterns to store, and
the memory matrix degenerates to a look-up-table. Section 5 discusses more closely the relation
between the Willshaw model and different implementations of look-up tables.

For the synaptic capacity we have CS
ε ∼ log n → ∞ for constant k ∼ 1, which comes very

close to the theoretical optimum CS ≤ ldn which is the information necessary to determine the
target cell of a given synapse among the n potential targets in the content population. Most
interestingly, CS and CI′

are independent of the fault tolerance parameter λ (and consequently
must also be independent of the high fidelity parameter ε). Thus, decreasing M from M = Mε

to M = 1 virtually does not affect neither CS nor CI′

. Note that for a single stored pattern
CS = (ld

(n
l

)

)/(kl) ≈ (ldn)/k reaches the upper bound of eq. 25 for M = 1.

4.4 Capacities for dense synaptic potentiation

For dense synaptic potentiation we have p1ε → 1 and typically supra-logarithmic pattern activity
k with k/ldn → ∞ (see section 3.4; cf. Table 1). With I(p1ε) ≈ −(1 − p1ε)ld(1 − p1ε) and
1 − p1ε ≈ − ln p1ε we obtain from eqs. 12,7,14, 18, 19, and 20 for large n → ∞

1 − p1ε ≈
ln n−l

εl

λk
→ 0 (26)

Mε ≈
mn

kl

(

ln(λk) − ln ln
n − l

εl

)

(27)

Cε ≈
(

ln(λk) − ln ln
n − l

εl

)

ldn−l
εl

k
· η → 0 (28)

CI
ε ≈ λη ≤ λ (29)

CI′

ε ≈ λ ·
ln(λk) − ln ln n−l

εl

lnn
≤ λ

ln k

lnn
(30)

CS
ε ≈ λ · ld(λk) − ld ln

n − l

εl
≤ λ lnn (31)

Although the pattern capacity Mε is much smaller than for balanced and sparse synaptic po-
tentiation, here we can still store many more moderately-sparse patterns than there are neurons
(M / n) as long as k ≤

√
n (see eq.27, cf. Table 1). The classical network capacity C vanishes

for large n, but for optimal compression we obtain a high information capacity CI → 1. Surpris-
ingly, information capacity can approach the maximum even for non-optimal compression: For
k = nd and 0 < d < 1 we obtain CI′ → λd from eq.30. Similarly, synaptic capacity achieve its
upper bound, CS ≤ ldn, for k = nd with d → 1. Note that here CI′

and CS achieve factor two
larger values than for sparse potentiation and distributed storage with k ≥ 2 (see eqs. 24,25).
However, the convergence appears to be extremely slow for high fidelity (see appendix B; see also
Knoblauch, 2008), and for d > 0.5 we obtain asymptotically only M < n (see eq. 27, cf. table 1;
see also section 5).

For dense synaptic potentiation both CI′

and CS depend on the fault tolerance requirement
λ and the high fidelity parameter ε, unlike to sparse synaptic potentiation where these capacities
are independent from λ. Unfortunately, requiring high fidelity and fault tolerance counteracts
the compressibility of the memory matrix because I(p1) increases for decreasing p1 > 0.5. This
results in the counter-intuitive fact that the amount of necessary physical memory increases with
decreasing number of stored patterns M .

As can be seen in Fig. 5a, both information capacities CI and CI′

and synaptic capacity CS

exhibit local maxima at kI
opt and kS

opt (= kI′

opt) for k > ldn. In Knoblauch (2003b, appendix B.4.2)
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these maxima are computed (not shown here). The resulting asymptotic optima are approximately

kS
opt ∼ n · (e

√
− ln ε)−

√
ln n (32)

kI
opt ∼ n1−− ln ε−

√
− ln ε

− ln ε−1 . (33)

Note that kS
opt grows faster than nd for any d < 1, but slower than the upper bound n/ log4 n

where our theory based on the binomial approximation eq. 8 is valid.
For linear k = cm and l = dn the binomial approximation is invalid and we have to use

alternative methods as described in appendix C. Here the Willshaw model can store only M ∼
log m pattern associations with vanishing storing capacities C,CI , CS → 0. There are much
better alternative models for this parameter regime. For example, the classical Hopfield model
can store a much larger number of M = 0.14n non-sparse patterns resulting in 0.14 bits per (non-
binary) synapse (Hopfield, 1982; Amit et al., 1987a,b). Thus, for non-sparse patterns synapses
with gradual weight states such as employed in the Hopfield model appear to make a big difference
to binary clipped Hebbian learning as in the Willshaw model.

4.5 Remarks on fault tolerance and attractor shape

How affects increasing noise (1−λ,κ) in the query patterns ũ the number of storable patterns Mε

and the other capacity measures (Cε, CI
ε , CS

ε ) for given network size and pattern activity? 3 It is
particularly simple to answer this question for pattern part retrieval where query patterns contain
miss-noise only (κ = 0). Using eqs. 7 and 12 we can introduce the fraction of storable patterns as
a function of the query noise λ,

mλ :=
Mε(λ)

Mε(1)
≈

ln(1 − p1ε(λ))

ln(1 − p1ε(1))
∈ (0; 1]

{

≈ p1ε(1)(1−λ)/λ) → 0 , p1ε(1) → 0
→ 1 , p1ε(1) → 1

(34)

where we used ln(1 − p1ε) ≈ −p1ε for p1ε → 0 and de l’Hospital’s rule for p1ε → 1. The fraction
of storable patterns with increasing fault tolerance differs markedly for the regimes of sparse,
balanced, and dense synaptic potentiation (cf. sections 3.4,4.3,4.4): Fig. 7a shows that the decrease
is steep for very sparse memory patterns and p1ε → 0 and shallow for moderately sparse patterns
and p1ε → 1. Thus, relatively large cell assemblies with k / log n are much more robust against
miss-noise than small cell assemblies with k ≤ log n (cf. Tab. 1). The same conclusion is true for
network capacity, Cε(λ) := mλ · Cε(1) (see eqs. 9,14).

Figure 7 about here

Increasing fault tolerance or attractor size of a memory will decrease not only Mε but also p1ε.
Therefore also the compressibility of the memory matrix will change. In analogy to mλ for Mε we
can compute the relative compressibility iλ for CI

ε ,

iλ :=
I(p1ε(λ))

I(p1ε(1))

{

≈ p1ε(1)((1−λ)/λ)/λ → 0 , p1ε(1) → 0
→ 1/λ , p1ε(1) → 1

, (35)

where we used I(p1) ≈ −p1ldp1 for p1ε(1) → 0 and de l’Hospital’s rule for p1ε(1) → 1 (cf.
Knoblauch, 2003b). The relative compressibility is depicted in Fig.7b. Note that always iλ < 1
for p1ε(1) < 0.5, but usually iλ > 1 for p1ε(1) > 0.5. The latter occurs for dense potentiation
and moderately, e.g., supra-logarithmically sparse address patterns (see Table 1) and implies the
counter-intuitive fact that although fewer patterns are stored more physical memory is required.
Thus, the dependence of information capacity on miss-noise is

cI
λ :=

CI
ε (λ)

CI
ε (1)

=
mλ

iλ
= λ + f(λ, p1ε(1)) ≈ λ, (36)

3Note that there is a difference between assessing fault tolerance for either a given memory load p1ε or given
pattern activities k, l, since the former is a function of the latter.
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for a small error function f with f → 0 for p1ε → 0 and p1ε → 1. The plots of cI
λ in Fig.7c reveals

the surprising result that the relative decrease in information capacity is almost linear in λ in
all the regimes of pattern sparsity. One can verify numerically that −0.02 < f(λ, p1) < 0.06 for
λ, p1 ∈ (0; 1) (see Fig.7d).

Similar considerations for the synaptic capacity CS (that apply also to information capacity
CI′

) reveal that

cS
λ :=

CS
ε (λ)

CS
ε (1)

=
mλ min(p1ε(1), 1 − p1ε(1))

min(p1ε(λ), 1 − p1ε(λ))
≈

{

CS
ε (1) , p1ε(1) → 0

λCS
ε (1) , p1ε(1) → 1

, (37)

It is remarkable that CS is independent of λ for ultra-sparse patterns with k/ log n → 0 and sparse
potentiation p1ε → 0. Thus, decreasing M from M = Mε(1) to M = Mε(λ) does neither affect
CS , nor CI′

. Actually, for a single stored pattern, CS = (ld
(n

l

)

)/(kl) ≈ (ldn)/k is identical to the
upper bound of eq. 25. Thus, CS

ε (λ) actually increases for λ → 0 (or ε → 0).
A theoretical analysis including add-noise (κ ≥ 0) is more difficult (cf. Palm and Sommer,

1996; Sommer and Palm, 1999; Knoblauch, 2003b) In numerical experiments we have investigated
retrieval quality as a function of miss-noise (λ < 1) and add-noise (κ > 0) using exact expressions
for retrieval errors p01 and p10 (see eqs. 52,53). For given network size (here m = n = 1000)
and sparsity level (k = l = 4, 10, 50, 100, 300), the number of stored patterns M has been chosen
such that for noiseless query patterns (λ = 1,κ = 0) a high-fidelity criterion ε ≤ 0.01 was fulfilled.
Then we computed retrieval quality for noisy query patterns ũ with activity z := |ũ|. For z ≤ k
queries were pattern parts (0 < λ ≤ 1, κ = 0). For z > k queries were supersets of the original
address patterns (λ = 1, κ ≥ 0). The retrieval quality was measured by minimizing εT :=
(T (k/n, p01, p10) − I(k/n))/I(k/n) with respect to the neuron threshold Θ. Here εT corresponds
to the normalized information loss between retrieved and originally stored patterns, but using the
Hamming distance based measure ε as defined in section 3.2 leads qualitatively to the same results
(see Knoblauch et al., 2008). Figure 8 shows for each noise level the retrieval quality (panel (a))
and the optimal threshold (panel (b)).

Figure 8 about here

These numerical experiments validate our theoretical results for pattern part retrieval (without
add-noise). For λ < 1 ultrasparse patterns (e.g., constant k = 4) appears to be very vulnerable
to miss-noise, i.e., ε increases very steeply with decreasing λ. In contrast, moderately sparse
patterns (e.g., k = 1000 for n = 10000) are much more robust against miss-noise, i.e., the increase
of ε is much weaker. On the other hand, our data also show that ultra-sparse cell assemblies
are very robust against add-noise, i.e., the fidelity parameter ε increases only relatively slowly
with increasing add-noise level κ. In contrast, the large cell assemblies are quite vulnerable to
add-noise: Here ε increases very steeply with κ. Our results show that the attractors around
memories uµ (i.e., the subspace of query patterns ũ that map to uµ) have only little similarity
to spheres in Hamming space. Rather, for ultra sparse patterns (k/ log n → 0) attractors are
elongated towards query patterns with more add-noise than miss-noise, whereas for moderately
sparse patterns (k/ log n → ∞) attractors are elongated towards query patterns with more miss-
noise than add-noise.

Figure 8b illustrates another important difference between sparse and dense synaptic potenti-
ation corresponding to ultra-sparse or moderately-sparse activity. For ultra-sparse patterns, the
optimal threshold depends mainly on λ, but only very weakly on κ. In contrast, for moderately-
sparse patterns, the optimal threshold has a strong dependence both on λ and κ. As a consequence,
in particular for biological systems it may be much easier to implement the optimal threshold for
retrieving ultra-sparse patterns. In a noisy regime with κ / 0 it will be sufficient to simply choose
a constant threshold identical to the assembly size, Θ = k, assuming that information processing
is usually accomplished with complete patterns, λ = 1. This bears in particular the possibility
of activating superpositions of many different ultra-sparse cell-assemblies. Actually, a reasonable
interpretation of seemingly random or spontaneous ongoing activity (Arieli et al., 1996; Softky
and Koch, 1993) would be that a large number of small cell assemblies or synfire chains (Abeles,
1982; Abeles et al., 1993; Diesmann et al., 1999; Wennekers and Palm, 1996) are active at the
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same time independently of each other.

5 Computational complexity and energy requirements

5.1 Compressed and uncompressed Willshaw network

So far we were concerned with the storage capacity and fault tolerance of the Willshaw associative
memory. Another important question is how fast the information can be retrieved for a imple-
mentation on a sequential digital computer. To retrieve a pattern in the Willshaw model we have
to compute potentials x = ũA and afterwards apply a threshold on each component of x, i.e., the
retrieval time (or number of retrieval steps) is

tWseq = z · n + n ≈ zn (38)

where z := (λ+κ)k is the query pattern activity. Note that retrieval time is dominated by synaptic
operations. Thus our temporal measure has also an interpretation in terms of energy consumption.
However, for this interpretation it may be more relevant to consider only non-silent synapses (see
section 1.2 and Lennie, 2003; Laughlin and Sejnowski, 2003) which is captured by the following
analysis for the “compressed” model.

Matrix compression (or eliminating silent synapses) in the sparse and dense connectivity
regimes not only improves the storage capacity, but generally accelerates retrieval. For sparse
connectivity with p1 → 0, the memory matrix A contains sparsely one-entries and computing the
potentials x requires only p1 · n steps per activated address neuron. Similarly, for dense connec-
tivity with p1 → 1, we can compute the potentials by x = z − ũA′ where A′ := 1 − A contains
sparsely one-entries (see also Knoblauch, 2006). Thus, the retrieval time is

tcWseq = c · z · n · min(p1, 1 − p1), (39)

where c is a (small) constant accounting for decompression of A (or A′), keeping track of neurons
selected by A (or A′) in a list, and finally applying the threshold to the neurons in that list (note
that znmin(p1, 1 − p1) may be % n). Obviously, tcWseq/tWseq → 0 at least for sparse and dense
potentiation with p1 → 0 or p1 → 1. However, it may be unfair to compare the compressed to
the uncompressed Willshaw model since the latter works in an optimal manner for p1 = 0.5 where
compression is not possible. Thus we may want to compare the two models for different pattern
sparseness k, l. Such an approach has been conducted by Knoblauch (2003b) showing that the
compressed model is superior to the uncompressed even if one normalizes the amount of retrieved
information to the totally stored information.

5.2 Comparison to look-up-tables and “grandmother cell” networks

It has been pointed out that Willshaw associative memory can allow a much faster access to
stored pattern information than a simple look-up table (e.g., see Palm, 1987). A look-up-table
implementation of associative memory would require an M ×m matrix U for the address pattern
vectors and an M × n matrix V for the content patterns such that Uµ = uµ and Vµ = vµ for
µ = 1, ...,M , i.e., each matrix row corresponds to a pattern vector. We also refer to the look-
up table as grandmother cell model (or briefly grandmother model, cf. Knoblauch, 2005; Barlow,
1972) because its biological interpretation actually corresponds to a two-layer architecture where an
intermediary population contains M neurons, one “grandmother” cell for each stored association
(see section 2.3). Thus, grandmother cell µ receives inputs via synapses corresponding to the µ-th
row of U. A winner-takes-all dynamics activates only the most excited grandmother cell which
can activate the content population according to the corresponding synaptic row in V.

For naive retrieval using a query pattern ũ one would compare ũ to each row of U and select
the most similar uµ. If each row of U contains k % m one-entries we may represent each pattern
by the (ordered) list of the positions (indices) of its one-entries. Then the retrieval takes only

tnLUT
seq = M · (z + k). (40)
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Then for M/n → ∞ we have indeed tnLUT
seq /tWseq ≥ M/n → ∞. Thus, the Willshaw model is

indeed more efficient than a naive look-up-table if we store more patterns M than we have content
neurons n.

However, in many cases, compressed look-up tables can be implemented more efficiently than
the Willshaw model even for M / n. So far, by representing lists of one-entries for each pattern
in the look-up-table, we have essentially compressed the matrix rows. However, it turns out that
compressing the columns is always more efficient (Knoblauch, 2005). If we optimally compress the
columns of U (e.g., by Huffman or Golomb coding, similar to the compressed Willshaw model)
then information capacity becomes CI → 1 and a retrieval requires only

tcLUT
seq = c · z · M · k/m (41)

steps. Comparing with the compressed Willshaw model this yields

ν :=
tseqcLUT

tseqcW ≈
− ln(1 − p1)

l min(p1, 1 − p1)
≤

− ln(1 − p1ε)

l min(p1ε, 1 − p1ε)
→

{

1/l , p1ε → 0

λk
l

ln(λk)−ln ln n
εl

ln n
εl

, p1ε → 1,
(42)

where we used 1 − p1ε ≈ − ln p1ε for p1ε → 1. Remember from section 3.1 that the memory
matrix is sparse (p1ε → 0), balanced (0 < δ < p1ε < 1 − δ), or dense (p1ε → 1) for sublogarith-
mic, logarithmic, or supralogarithmic k(n). Thus the Willshaw model performs worse than the
grandmother model for most parameters: The Willshaw model is unequivocally superior only for
asymmetric networks with large k and small l. If we require m = n and k = l (e.g., for auto-
association) the Willshaw model is superior with ν → λd/(1 − d) only for almost linear k = nd

with 1/(1 + λ) < d < 1.
Look-up tables are also superior to distributed associative network with respect to fault tol-

erance because they always find the exact nearest neighbor. In order to have a fair comparison
with respect to fault tolerance we can “dilute” the look-up-tables by randomly erasing one-entries
in matrix U. This will further accelerate retrieval in look-up tables and cut even the remaining
parameter range where the Willshaw model is superior (Knoblauch et al., 2008). At least for
asymmetric networks there remains a narrow parameter range where the Willshaw model beats
diluted look-up-tables. This seems to be the case for large m, small l, n and relatively small k
(but still large enough with supralogarithmic k/ log n → ∞ to obtain dense potentiation).

5.3 Parallel implementations

For full (i.e., synapse-) parallel hardware implementations (like brain tissue or VLSI chips Chicca
et al., 2003; Heittmann and Rückert, 2002) the retrieval time is O(1) and the remaining constant
is mainly determined by the hardware properties. Here the limiting resource is the connectivity,
e.g., the number of non-silent synapses, and our analysis so far can be applied again.

However, there are also neuron-parallel computers with reduced hardware connectivity. One
big advantage of the Willshaw model is that there are obvious realizations for such architectures
(Palm and Palm, 1991; Hammerstrom, 1990; Hammerstrom et al., 2006). For example, on a
computer with n processors (one per neuron) and a common data bus shared by all processors,
a retrieval takes time tprl

W = z + 1. In comparison, a corresponding implementation of the
grandmother model or a look-up table will require M processors and time tprl

LUT = z + log M .
In particular for M / n there is no obvious parallelization of look-up tables that would beat the
Willshaw model.

In summary, both the Willshaw and the grandmother model are efficient (tseq/M, tprl/n → 0)
only for sparse address patterns. Non-sparse patterns require additionally a sparse recoding (or
indexing) as is done in multi-index hashing (Greene et al., 1994). Although there are quite efficient
computer implementations, it appears that distributed neural associative memories have only
minor advantages over compressed look-up tables or multi-index hashing, at least for solving the
Best Match problem on sequential computers. On particular parallel computers the Willshaw
model remains superior.
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6 Summary and discussion

Neural associative memories are promising models for computations in the brain (Hebb, 1949;
Anderson, 1968; Willshaw et al., 1969; Marr, 1969, 1971; Little, 1974; Gardner-Medwin, 1976;
Braitenberg, 1978; Hopfield, 1982; Amari, 1989; Palm, 1990), as well as they are potentially useful
in technical applications such as cluster analysis, speech and object recognition, or information
retrieval in large databases (Kohonen, 1977; Bentz et al., 1989; Prager and Fallside, 1989; Greene
et al., 1994; Knoblauch, 2005; Mu et al., 2006; Rehn and Sommer, 2006).

In this paper we have raised the question of how to evaluate the efficiency of associative
memories, that is, how to quantify the achieved computation and the used resources. The common
measure of efficiency is network capacity, that is, the amount of information per synapse that can be
stored in a network of fixed structure (Willshaw et al., 1969; Palm, 1980; Amit et al., 1987a,b; Palm,
1991; Nadal, 1991; Buckingham and Willshaw, 1992; Sommer and Palm, 1999; Bosch and Kurfess,
1998). Here we have argued that network capacity is biased because it disregards the entropy of
the synapses and thus underestimates models with low synaptic entropy and overestimates models
with high synaptic entropy. To account for the synaptic entropy it was necessary to introduce
information capacity, a new performance measure. Interestingly, network capacity and information
capacity draw radically different pictures in what range associative memories work efficiently. For
example, the Willshaw model is known to optimize the network capacity if the distribution of
0-synapses and 1-synapses is even and thus the synaptic entropy is maximal (Willshaw et al.,
1969; Palm, 1980). In contrast, the Willshaw model reaches the optimum information capacity in
regimes of small synaptic entropy, if either almost all synapses remain silent (sparse potentiation
with memory load p1 → 0) or if almost all synapses are active (dense potentiation with memory
load p1 → 1). We have shown that the regimes of optimal information capacity that we discovered
have direct practical implications. Specifically, we have constructed models of associative memory
using mechanisms like Huffman or Golomb coding for synaptic compression which can outperform
their counterparts without matrix compression.

Further, the discovery of regimes in associative memories with high information capacity could
be a key to understand the computational function of the various types of structural plasticity in
the brain. In structural plasticity functionally irrelevant silent synapses are pruned and replaced
by new synapses generated at other locations in the network. This process can lead to a sparsely
connected neural network in which each synapse carries a large amount of information about
previously learned patterns (Knoblauch, 2009). To quantify the effects of structural plasticity we
have introduced the definition of synaptic capacity which measures the information stored per
functionally necessary synapse (i.e., not counting silent synapses which could be pruned). Our
model analyses indicate that information capacity and synaptic capacity become optimal in the
same regimes of operation. Thus, structural plasticity can be understood as a form of synaptic
compression required to optimize information capacity in biological networks.

Although our new definitions of performance measures for associative memories are general,
for practical reasons we had to restrict the model analysis to two simple yet interesting examples
of associative memories. The simplest possible version is a linear associative memory in which
learning corresponds to forming the correlation matrix of the data and retrieval corresponds to
a matrix-vector multiplication (Kohonen, 1977). However, the efficiency of linear associative
memories is very limited. The crosstalk can be predicted to set in if the stored patterns deviate
from the principal components of the data which will be necessarily the case if the number of
stored patterns exceeds the dimension of the patterns. The Willshaw model is a feed-forward
neural network similar to the linear associative memory but much more efficient by any standards
because nonlinearities in the neural transfer function and in the superposition of memory traces
keep the crosstalk small, even if the number of stored patterns scales almost with the square of
the dimension of the patterns (Willshaw et al., 1969; Palm, 1980). Thus, we chose to analyze the
Willshaw network. In addition, to compare neural associative memories to look-up tables (LUT),
the classical structure for content-addressable memory in computer science, we also analyzed a
two layer extension of the Willshaw network with winner-take-all (WTA) activation in the hidden
layer which implements a look-up-table.
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Previous analyses of the Willshaw network had revealed that the network capacity is optimized
in a regime in which stored patterns are sparse (the number of active units grows only logarith-
mically in the network size, k ∼ log n) and the number of stored patterns grows as n2/(log n)2

(Willshaw et al., 1969; Palm, 1980). However, these analyses determined the upper bound of the
network capacity with the level of retrieval errors undefined. In practice, computations rely on a
specific and guaranteed level of retrieval quality. Therefore, for fair and meaningful comparisons
between the three definitions of storage capacity, network, information and synaptic capacity, we
had to develop new analytical procedures to quantify the different capacities at a defined level of
retrieval errors.

The new analyses revealed three important new results. First, implicit already in classical
analyses, a high network capacity 0 < C ≤ ln 2 ≈ 0.69 or 0 < C ≤ 1/e ln 2 ≈ 0.53 is restricted to a
very narrow range of logarithmic pattern sparseness (see section 3.4 and appendix D). Second, the
information and synaptic capacities assume high values for quite wide ranges of pattern activities
(see Fig. 5). Third, the optimal regimes of information and synaptic capacities, CI → 1 and
CS ∼ log n, coincide but are distinct from the optimal regime for network capacity. For example,
the information capacity has the minimum in the regime of optimal network capacity and assumes
the theoretical optimum CI → 1 either for ultra-sparse patterns k/ log n → 0 or for moderately
sparse patterns k/ log n → ∞ (see Perez-Orive et al., 2002; Hahnloser et al., 2002; Quiroga et al.,
2005; Waydo et al., 2006, for experimental evidence supporting sparse representations in the brain).

In addition, the new analyses revealed how the robustness of content-addressable memory
against different types of noise in the address patterns varies in the different regimes of operation.
While the effects of additional activity (add-errors) and missing activity (miss-errors) were quite
balanced for log-sparse patterns (see Fig. 8) the effects strongly varied with error type in the ultra-
sparse and moderately sparse regime. Specifically, the retrieval of ultra-sparse patterns (k % log n)
was robust against add-errors in the address pattern, but vulnerable to miss-errors. The inverse
relation was found for the retrieval of moderately-sparse patterns. Thus, the ultra-sparse regime
could be of particular interest if a memory has to be recognized in superpositions of many patterns
whereas the moderately sparse regime allows to complete a memory pattern already from a small
fragment.

The retrieval speed defined as the time (or number of computation steps) required to retrieve
a pattern is another important performance measure for associative memory. Previous work has
hypothesized that neural associative memory is an efficient means for information retrieval in
the context of the Best Match problem (Minsky and Papert, 1969), even when implemented on
conventional computers. For example, Palm (1987) has argued that distributed neural associative
memory would have advantages over local representations such as in the LUT network. While
this may hold true for plain (uncompressed) and parallel implementations (Hammerstrom, 1990;
Palm and Palm, 1991; Knoblauch, 2003b; Chicca et al., 2003), we have shown in section 5 that
the compressed LUT network implemented on a sequential architecture outperforms the Willshaw
network for almost all parameters (see eq. 42). Asymptotically, sequential implementations of the
single layer Willshaw model remain superior only for almost non-sparse patterns (k ∼ nd with d
near 1) or if content patterns are much sparser than address patterns.

The neurobiological implications of the new efficient regimes we discovered in the Willshaw
model (sparse and dense synaptic potentiation corresponding to ultra-sparse and moderately-
sparse patterns) rely on two oversimplifications that need to be addressed in future work.

First, our analyses have assumed that learning starts in a fully connected network and is
followed by a pruning phase where the silent dispensable synapses can be pruned. Since neural
networks of the brain have generally low connectivity at any time this highly simplified model must
be refined. Currently we investigate a more realistic model for cortical memory in which a low-
capacity memory buffer network (e.g., the hippocampus) interacts with a high-capacity associative
projection (e.g., a cortico-cortical synaptic connection) which is subject to structural plasticity.
Pattern associations are temporarily stored in the low-capacity buffer and repeatedly replayed to
the high-capacity network. The combination of repetitive training, structural plasticity, and an
adequate consolidation of activated synapses emulates a fully connected network equivalent to the
model analyzed in this work, although the connectivity level in the cortical module is always low
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(Knoblauch, 2006, 2009).
Second, it needs to be explained how the regime of moderately-sparse patterns with k/ log n →

∞ corresponding to dense synaptic potentiation with p1 → 1 can be realized in realistic neu-
ronal circuitry. This regime becomes efficient in terms of high synaptic capacity or few synaptic
operations per retrieval but only if implemented with inhibitory neurons where the rare silent (0-
)synapses are maintained and the large number of active (1-)synapses can be pruned (Knoblauch,
2006). The implementation of this regime is conceivable in brain structures that are dominated by
inhibitory neurons, e.g., cerebellum, basal ganglia, and also by using specific types of inhibitory
interneurons in cortical microcircuits.

A Binary channels

The Shannon information I(X) of a binary random variable X on Ω = {0, 1} with p := pr[X = 1]
equals

I(p) := −p · ldp − (1 − p) · ld(1 − p) ≈
{

−p · ldp , p % 0.5
−(1 − p) · ld(1 − p) , 1 − p % 0.5

(43)

(Shannon and Weaver, 1949; Cover and Thomas, 1991). Note the symmetry I(p) = I(1− p), and
that I(p) → 0 for p → 0 (and p → 1). A binary memoryless channel is determined by the two
error probabilities p01 (false one) and p10 (false zero). For two binary random variables X and Y
where Y is the result of transmitting X over the binary channel we can write

I(Y ) = IY (p, p01, p10) := I (p (1 − p10) + (1 − p) p01) (44)

I(Y |X) = IY |X(p, p01, p10) := p · I(p10) + (1 − p) · I(p01) (45)

T (X;Y ) = T (p, p01, p10) := IY (p, p01, p10) − IY |X(p, p01, p10). (46)

For the analysis of pattern part retrieval in section 3.1 the case p10 = 0 is of particular interest,

T (p, p01, 0) = I (p + p01 − pp01) − (1 − p) · I(p01) (47)

≤ I(p01) + I ′(p01) · (p(1 − p01)) − (1 − p) · I(p01) = −pldp01 (48)

For the upper bound we have linearized I in p01 and used the convexity of I(p), i.e., (dI/dp)2 =
−1/(p(1 − p) ln 2) < 0. The upper bound becomes exact for p/p01 → 0. For high-fidelity we are
typically interested in p01 % p := l/n (see section 3.2). Thus, linearization of I in p yields a better
upper bound,

T (p1, p01, 0) ≤ I(p) + I ′(p) · (1 − p) · p01 − (1 − p) · I(p01) ≤ I(p), (49)

where the approximations become exact in the limit p01/p → 0. For the relative error eI of
approximating T (p, p01, p10) by I(p) we can write

eI :=
I(p1) − T (p1, p01, p10)

I(p1)
≈ (1 − p1)

I(p01) − I ′(p1) · p01

I(p1)
≈

I(p01)

I(p1)
−

p01

p1
. (50)

where for the last approximation we additionally assume p % 0.5 and correspondingly 1 − p ≈ 1,
I(p) ≈ −pldp, and I ′(p) ≈ −ldp. Thus we obtain

Applying these results to our analysis of the Willshaw model in section 3.2, using p := l/n % 0.5
and p01 := εp for ε % 1, we obtain

eI ≤
I(ε l

n )

I( l
n )

− ε ≈ ε ·
ldε

ld( l
n )

≈
I(ε)

−ld( l
n )

≤
{

I(ε) , in any case
ε , l/n ≤ ε

. (51)

Note that typically sparse patterns with l/n % 1/100 are used. Thus requiring for example
ε = 0.01 implies that the relative error of approximating T by I in eq. 15 is smaller than one
percent.
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B Exact retrieval error probabilities for fixed query activity

Our analysis so far used the binomial approximation eq. 8. Here we give the exact expressions for
fixed query pattern activity, i.e., when the query pattern ũ has exactly c := λk correct one-entries
from one of the address patterns uµ and additionally f := κk false one-entries (0 < λ ≤ 1, κ ≥ 0).
Retrieving with threshold Θ, the exact retrieval error probabilities p01 := pr(v̂i = 1|vµ

i = 0) of a
false one-entry and p10 := pr(v̂i = 0|vµ

i = 1) of a missing one-entry are

p01(Θ) =
c+f
∑

x=Θ

pWP(x; k, l,m, n,M − 1, c + f) (52)

p10(Θ) =
Θ−1
∑

x=c

pWP(x − c; k, l,m, n,M − 1, f) . (53)

where pWP(x; k, l,m, n,M, z) is the distribution of dendritic potential x when stimulating with a
random query pattern having exactly z one-entries and m − z zero entries (0 ≤ x ≤ z). It is

pWP(x; k, l,m, n,M, z) =

(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(1 −
l

n
(1 − B(m, k, s + z − x)))M (54)

≈
(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(1 −
l

n
(1 − (1 −

k

m
)s+z−x))M (55)

=
M
∑

i=0

pB(i;M, l/n)pB(x; z, 1 − (1 − k/m)i) (56)

where we used B(a, b, c) :=
(a−b

c

)

/
(a

c

)

=
∏c−1

i=0 (a − b − i)/(a − i) and the binomial probability

pB(x;N,P ) :=
(N

x

)

P x(1 − P )N−x. Eq. 54 is exact for fixed address pattern activity, i.e., if each
address pattern uµ has exactly k one-entries, and has been found by Knoblauch (2008) generalizing
a previous approach of Palm (1980) for the particular case of zero noise (c = k, f = 0). The
approximations eq. 55,56 would be exact for random address pattern activity, i.e., if uµ

i is one
with probability k/m (but still fixed c, f). Eq. 56 averages over the so-called unit-usage (the
number of patterns a given content neuron belongs to) and has been found by Buckingham and
Willshaw (1992); Buckingham (1991). The transformation to eq. 55 has been found by Sommer
and Palm (1999). Eqs. 54,55 are numerically efficient to evaluate for low query pattern activity
c + f , whereas eq. 56 is efficient for few stored patterns M . The distinction between fixed and
random address pattern activity, |uµ|, is of minor interest already for moderately large networks,
because then eqs. 54-56 yield very similar values Knoblauch (2006, 2008). However, the distinction
between fixed and random query pattern activity, |ũ|, remains important even for large networks
(see appendix D).

For the particular case of pattern part retrieval, c = λk and f = 0, we can use the Willshaw
threshold Θ = λk and the error probabilities are p10 = 0 and

p01 =
λk
∑

s=0

(−1)s

(

λk

s

)

[1 −
l

n
(1 − B(m, k, s))]M−1 (57)

≈
λk
∑

s=0

(−1)s

(

λk

s

)

[1 −
l

n
(1 − (1 − k/m)s)]M−1 (58)

=
M−1
∑

i=0

pB(i;M − 1, l/n)(1 − (1 − k/m)i)λk (59)

≥ pλk
1 . (60)

Here eqs. 57-59 correspond to eqs. 54-56, and the bound corresponds to the binomial approx-
imation eq. 8. Knoblauch (2007, 2008) show that this lower bound becomes tight at least for
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k ∼ O(n/ log4 n) or, for m = n, k = l, already for k ∼ O(n/ log2 n). Thus, our theory based on
the binomial approximation eq. 8 becomes exact for virtually any sub-linear k(n).

We have validated these results in extensive numerical experiments which can be found in
Knoblauch (2006, 2008); Knoblauch et al. (2008). Table 2 shows some exact results when ad-
dressing with half patterns (λ = 0.5, κ = 0). Fig. 9 plots the quality of the binomial approximation
eq. 8 for pattern capacity M and information capacity CI for different sparsity levels and increasing
network size n → ∞.

Table 2 about here

Figure 9 about here

C Fallacies for extremely sparse and non-sparse activity

As discussed in section 3.3 our analysis method is exact, both for small and very large networks,
whereas alternative methods are inaccurate for finite networks and, for some parameter ranges,
even in the asymptotic limit. For example, previous analyses of feed-forward associative networks
with linear learning, such as the covariance rule, often compute capacity as a function of the
so-called signal-to-noise ratio SNR = (µhi − µlo)2/σ2 defined as the mean potential difference
between “high-units” (which should be active in the retrieval result v̂) and “low-units” (which
should be inactive) divided by the potential variance (Dayan and Willshaw, 1991; Palm, 1991;
Palm and Sommer, 1996). Assuming Gaussian dendritic potentials, such analyses propose an
asymptotic network capacity C = 0.72 for linear associative networks with covariance learning
and k/m → 0 which seems to be better than the binary Willshaw model. However, numerical
evaluations prove that even for moderate sparseness in large finite networks the Willshaw model
performs better (data not shown). To analyze the reason for this discrepancy we compute the
SNR for the Willshaw model,

SNRWillshaw ≈
(λk(1 − p1))2

λkp1(1 − p1)
=

λk(1 − p1)

p1
(61)

The SNR for the network with linear learning and the optimal covariance rule has been found to
be m/(M(l/n)(1 − l/n)) (Dayan and Willshaw, 1991; Palm and Sommer, 1996). Using M as in
eq. 7 and assuming small p1 → 0 this becomes

SNRCov ≈
mkl

−mn(l/n) ln(1 − p1)
=

k

− ln(1 − p1)
(62)

Thus, for small p1 → 0 the SNR will be k/p1 for both models which falsely suggests, assuming
Gaussian dendritic potentials, that the Willshaw model could also store 0.72 bits per synapse,
which is, of course, wrong. In fact, for k/ log n → 0 (which is equivalent to p1ε → 0) eq. 17 proves
zero capacity for the Willshaw model and strongly suggests the same result for the covariance rule
in the linear associative memory. Further numerical experiments and theoretical considerations
show that even for k ∼ log n the Willshaw model performs better than linear covariance learning
although it cannot exceed C = 0.69 or C = 0.53. This shows that the SNR method and the
underlying Gaussian approximation become reliable only for dense potentiation with p1ε → 1 and
k/ log n → ∞ (see also Knoblauch, 2008; Henkel and Opper, 1990).

But even for dense potentiation the Gaussian assumption is inaccurate for linear pattern activ-
ities k = cn and l = dn with constant c and d, falsely suggesting constant pattern capacity Mε ∼ 1
for m,n → ∞ (note that dense potentiation may imply highly asymmetric potential distributions;
see Knoblauch, 2003b). In fact, Mε → ∞ diverges for RQ1 as can be seen in eq. 59. Moreover, we
can compute upper and lower bounds for eq. 59 by assuming that all content neurons have a unit
usage i larger or smaller than Md + ξ

√

Md(1 − d) (note that p01 given i increases with i),

p01 ≈ (1 − (1 − c)Md+ξ
√

Md(1−d))λcm (63)
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For sufficiently large positive (but for RQ1 still constant) ξ this approximation is an upper bound.
For example, we can choose ξ := Gc−1(ε1d) with ε1 % ε such that only few content neurons have
a unit usage more than ξ standard deviations larger than the mean unit usage (here Gc(x) :=
0.5erfc(x/

√
2) is the Gaussian tail integral). Similarly, for large negative ξ we obtain a lower

bound. Requiring p01 ≤ εd/(1 − d) we obtain for the pattern capacity

Mε + ξ
√

Mε(1 − d)/d ≈
ln(1 − (εd/(1 − d))1/(λcm))

d ln(1 − c)
≈

lnm

−d ln(1 − c)
. (64)

Thus, the pattern capacity is essentially independent of ξ. However, compared to eqs. 13,27 the
asymptotic pattern capacity is reduced by a factor f := (− ln(1 − c))/c < 1. This turns out to
be the reason that the Willshaw network has zero information capacity CI → 0 and zero synaptic
capacity CS → 0 for linear address pattern activity k = cm. With p̃0ε := (1−cd)fMε → 0 (see eq. 6)
it is p0ε := 1−p1ε = p̃f

0ε (see eq. 12). Therefore eq. 18 becomes CI
ε ∼ ld(1−p̃0ε)(ln p̃0ε)/(p̃f

0εldp̃f
0ε) ∼

p̃1−f
0ε → 0. Similarly, eq. 20 becomes CS

ε ∼ ld(1 − p̃0ε)(ln p̃0ε)/p̃f
0ε ≈ p̃1−f

0ε ln p̃0ε → 0.

D Corrections for random query activity

So far, our exact theory in appendix B as well as the approximative theory in sections 3-5 assume
that the query pattern ũ has exactly λk correct one-entries (and κk false one-entries). This is
sufficient for many applications where specifications assume a minimal quality of query patterns
in terms of a lower bound for the number of correct one-entries. However, in particular for small
k or large λ near 1, we may want to include the case of random query pattern activity. In the
following we assume that the address patterns have random activity, i.e., each pattern component
uµ

i is one with probability k/m independent of other components. Similarly, in a query pattern ũ
a one-entry is erased with probability 1 − λ. For simplicity we assume no add-noise, i.e., κ = 0.
Thus, a component in the query pattern, ũi, is one with probability λk/m. Then the query pattern
activity Z is a binomially distributed random variable, pr[Z = z] = pB(z;m,λk/m) (for pB see
below eq. 56). For a particular Z = z the exact error probability p01 is given by eq. 58 (or eq. 59)
replacing λk by z. Averaging over all possible z yields

p∗01 =
m

∑

z=0

pB(z;m,λk/m)
z

∑

s=0

(−1)s

(

z

s

)

[1 −
l

n
(1 − (1 − k/m)s)]M−1

=
m

∑

s=0

(−
λk

m
)s

(

m

s

)

[1 −
l

n
(1 − (1 − k/m)s)]M−1 (65)

=
M−1
∑

i=0

pB(i;M − 1, l/n)
m

∑

z=0

pB(z;m,λk/m)(1 − (1 − k/m)i)z

=
M−1
∑

i=0

pB(i;M − 1, l/n)(1 −
λk

m
(1 − k/m)i)m (66)

The first equation is numerically efficient for small k, the last equation for small M . For the
binomial approximative analyses we can rewrite eq. 8 as

p∗01 ≈
m

∑

z=0

pB(z;m,λk/m)pz
1 = (1 − λ

k

m
(1 − p1))

m (67)

Controlling for retrieval quality, p∗01 ≤ εl/(n − l), the maximal memory load eq. 12 becomes

p∗1ε ≈ 1 −
1 − ( εl

n−l )
1/m

λk/m
. (68)

26



Note that positive p∗1ε ≥ 0 requires ε ≥ e−λk(n − l)/l or, equivalently, k ≥ ln((n − l)/(εl))/λ.
Consequently, even for logarithmic k, l = O(log n), it may be impossible to achieve retrieval quality
levels RQ1 or higher (see section 2.1). For example, k ≤ c log n with c < 1 implies diverging noise
ε ≥ n1−c/l, while RQ1 would require constant ε ∼ 1 and RQ2 or RQ3 even vanishing ε → 0. This
is a major difference to the model with fixed query pattern activity.

Writing x := εl/(n− l) and using ex =
∑∞

i=0 xi/i! we obtain for the difference ∆p1ε := p1ε−p∗1ε

between eq. 12 and eq. 68,

∆p1ε ≈ e(ln x)/(λk) − (1 +
e(ln x)/m − 1

λk/m
) (69)

=
∞
∑

i=1

(ln x)i

i!(λk)i
−

(ln x)i

i!λkmi−1
(70)

=
∞
∑

i=2

(ln x)i

i!(λk)i
(1 − (λk/m)i−1) (71)

≈ p1ε − 1 − ln p1ε (72)

where the last approximation is true for balanced potentiation with fixed p1ε and λk/m → 0.
Note that for sparse potentiation with p1ε → 0 and k/ log n → 0 we have diverging ∆p1ε. At
least for dense potentiation with p1ε → 1 and k/ log n → ∞ the relative differences vanish, i.e.,
∆p1ε/p1ε → 0 and even ∆p1ε/(1−p1ε) → 0. Thus, at least for dense potentiation the models with
fixed and random query pattern activity become equivalent, including all results on information
capacity CI and synaptic capacity CS (see sections 3-5). Proceeding as in section 3.2 we obtain

p∗1ε ≈ 1 + ln p1ε ≈ 1 −
ln n−l

εl

λk
(73)

p∗0ε := 1 − p∗1ε =
ln n−l

εl

λk

(

⇔ k ≈
ln n−l

εl

λp∗0ε

)

(74)

M∗
ε = −

mn

kl
ln p∗0ε ≈ −λ2p2

0ε ln p0ε
k

l

mn

(ln n−l
εl )2

(75)

C∗
ε = Mεm

−1T (l/n, εl/(n − l), 0) ≈ −λp∗0εldp∗0εη (76)

The asymptotic bound of network capacity is thus only C∗
ε ≤ 1/(e ln 2) ≈ 0.53 for p∗0ε = 1/e ≈

0.368 and retrieval quality levels RQ0-RQ2 (for RQ3 the bound decreases by factor 1/3 as discussed
in section 3.3). Figure 10 illustrates asymptotic capacities in analogy to Fig. 6. For dense poten-
tiation, p0ε → 0, results are identical to the model with fixed query pattern activity. For sparse
potentiation, p0ε → 1, we have CI∗

ε := C∗
ε /I(p0ε) → 0 and still CS∗

ε := C∗
ε /min(p0ε, 1 − p0ε) →

1/ ln 2 ≈ 1.44. For k = l maximal pattern capacity is 0.18λ2mn/(ldn)2 for p∗0ε = 1/
√

e ≈ 0.61.
Note that our result C∗ ≤ 0.53 contradicts previous analyses. For example, Nadal (1991)

estimates C∗ ≤ 0.236 for p1 = 0.389. We believe that our results are correct and that the
discrepancies are due to inaccurate approximations employed by previous works. In fact, we have
verified the accuracy of our theory in two steps (see Knoblauch, 2006, 2008; Knoblauch et al.,
2008): First, we have verified all our formulae for the exact error probabilities of the different
model variants (eqs. 52-59,65-66) by extensive simulations of small networks. Second, we have
proven the asymptotic correctness of our binomial approximative theory (see eqs. 8,12-14,73-76)
by theoretical considerations and numerical experiments (see also Fig. 10).

Figure 10 about here
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k p1ε Mε Cε CI
ε CI′

ε CS
ε

c 0 ∼ n2−1/c 0 1 1/c (ldn)/c → ∞

c(ln n)d , 0 < d < 1 0 ∼ n2−1/(c(ln n)d)/(ln n)2d 0 1 0 ∼ (ln n)1−d → ∞

ldn 0.5 (ln 2)n2/(ldn)2 ln 2 ≈ 0.69 ln 2 0 2 ln 2

c ln n exp(−1/c) ∼ n2/(ln n)2 ∈ (0; ln 2) ∈ (ln 2; 1) 0 (2 ln 2;∞)

c(ln n)d , 1 < d 1 ∼ n2 ln ln n/(ln n)2d 0 1 0 ∼ ln ln n → ∞
√

n 1 0.5n ln n 0 1 0.5 0.5ldn → ∞

cnd , 0 < d < 1 1 ∼ n2−2d ln n 0 1 d dldn → ∞

cn , 0 < c < 1 1 (ln n)/(−c ln(1 − c)) 0 0 0 0

Table 1: Asymptotic results for hifi memory load p1ε, storable patterns Mε, and network capac-
ity Cε, information capacities CI

ε for optimal compression and CI′

ε for simple target lists, and
synaptic capacity CS

ε. Here we consider only the special case of k = l, m = n → ∞, noiseless
address patterns (λ = 1, κ = 0), and constant fidelity parameter ε ∼ 1 corresponding to quality
regime RQ1.
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n = 100 200 500 1000 2000 5000 10000 20000 50000 100000

k = 4 4 4 4 4 4 4 4 4 4 4

Mε 7 23 102 315 951 3985 11614 33561 135216 386157

C 0.016734 0.016080 0.013581 0.011749 0.009820 0.007427 0.005876 0.004581 0.003239 0.002467

CI
ε 0.189510 0.213911 0.239855 0.257522 0.272803 0.289919 0.301034 0.310883 0.322324 0.330003

CS
ε 1.501279 1.755475 2.087170 2.337024 2.586433 2.915938 3.165234 3.414622 3.744455 3.994076

k = ldn 7 8 9 10 11 12 13 14 16 17

Mε 26 73 530 1578 6825 31481 130517 410162 2239454 8958499

Cε 0.093667 0.087255 0.136318 0.126214 0.166369 0.152057 0.185759 0.169994 0.185909 0.211443

CI
ε 0.177045 0.174203 0.216708 0.210461 0.239663 0.234620 0.258792 0.248317 0.254089 0.272940

CS
ε 0.781248 0.790925 0.863820 0.864564 0.891863 0.916887 0.938451 0.933671 0.907202 0.926973

k =
√

n 10 14 22 32 45 71 100 141 224 316

Mε 20 67 294 791 2122 7082 17013 40294 119800 271628

Cε 0.092180 0.120686 0.150986 0.159572 0.162795 0.150634 0.136076 0.120799 0.098333 0.082962

CI
ε 0.134642 0.140982 0.152895 0.160997 0.175765 0.189566 0.198546 0.211598 0.224751 0.235512

CS
ε 0.506227 0.430356 0.347634 0.358847 0.476765 0.628296 0.745907 0.895062 1.088783 1.249831

k = n2/3
22 34 63 100 159 292 464 737 1357 2154

Mε 11 27 76 156 310 736 1371 2509 5454 9662

Cε 0.081660 0.086933 0.081497 0.071901 0.061067 0.046564 0.036626 0.028186 0.019377 0.014325

CI
ε 0.083180 0.087490 0.092952 0.097348 0.104483 0.114870 0.124077 0.134520 0.149156 0.160552

CS
ε 0.194163 0.191892 0.275016 0.344860 0.435923 0.575533 0.703203 0.852483 1.078028 1.268922

k = n/4 25 50 125 250 500 1250 2500 5000 12500 25000

Mε 10 16 24 31 39 49 56 64 74 82

Cε 0.079104 0.063284 0.037970 0.024522 0.015425 0.007752 0.004430 0.002531 0.001171 0.000649

CI
ε 0.079241 0.067368 0.050885 0.042898 0.038121 0.030659 0.024775 0.021308 0.016677 0.014209

CS
ε 0.166347 0.177726 0.178703 0.181323 0.191142 0.183161 0.164436 0.157467 0.138863 0.128935

Table 2: Exact capacities of the Willshaw model computed from eq. 57 for m = n, k = l, high
fidelity ε = 0.01 when addressing with half address patterns (λ = 0.5, κ = 0). Table entries
correspond to network size n, pattern activity k, pattern capacity Mε, network capacity Cε,
information capacity CI

ε , and synaptic capacity CS
ε .
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Figure 1: Learning and retrieving patterns in the binary Willshaw model. During learning (left)
the associations between a set of address patterns uµ and content patterns vµ are stored in the
synaptic memory matrix A by clipped Hebbian learning (eq. 4). For retrieval (right) an address
pattern ũ is propagated through the synaptic network by a vector-matrix multiplication followed
by a threshold operation (eq. 5). In the example the address pattern contains half of the one-entries
of u1 and the retrieval result equals v1 for an optimal threshold Θ = |ũ| = 2.
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Figure 2: Single layer Willshaw model (left) and two layer extension (right) where an additional
cell layer w mediates between address layer u and content layer v.
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Figure 3: Classical capacity measures C and M for a finite Willshaw network with m = n = 105

neurons assuming assuming equal pattern activities, k = l, and zero input noise, λ = 1, κ = 0. a
: Network capacity Cε (bold line), pattern capacity Mε (thin line) and memory load p1ε (dashed
line) as functions of pattern activity k (log-scale). The fidelity level is ε = 0.01. The maximum
Cε ≈ 0.49 is reached for k = 18. For larger or smaller k the capacity decreases rapidly. The
memory load p1ε increases monotonically with k and is near 0.5 at maximum capacity. b : Same
quantities as in (a) plotted as functions of ε (log-scale) assuming fixed k = 18. The maximum
Cε ≈ 0.63 is reached at low fidelity (ε ≈ 1) where the retrieval result contains a high level of add
noise. c-e : Contour plots in the plain spanned by pattern activity k and high fidelity parameter
ε for network capacity Cε (c), memory load p1ε (d), and pattern capacity Mε (e).
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Figure 4: Classical capacity measures C and M for the Willshaw network in the asymptotic limit
n → ∞. Other parameter settings are as in figure 3: m = n, k = l, λ = 1 and κ = 0. a : Network
capacity Cε → ldp1ε ln(1 − p1ε) (bold line, see eq.14) and pattern capacity Mε/(mn/(ldn)2) →
−(ldp1ε)2 ln(1 − p1ε) (thin line, see eq.13) as functions of the matrix load p1ε (see eq. 12). Cε is
maximal for p1ε = 0.5, whereas Mε is maximal for p1ε ≈ 0.16. b : Network capacity Cε as function
of n for different functions of pattern activity k(n). Black lines correspond to high fidelity retrieval
with ε = 0.01, gray lines to low fidelity with ε = 1. Bold lines: squareroot sparseness; solid lines:
logarithmic sparseness; thin lines: low constant activity (k = 5).
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Figure 5: Capacity measures CI and CS for a finite Willshaw network with structural compression.
Parameters are as in Fig. 3 (square weight matrix with m = n = 105, equal pattern activities
k = l, zero input noise with λ = 1, κ = 0). The plots show information capacity CI

ε for optimal
Huffman/Golomb compression (medium solid), information capacity CI′

ε for simple target lists
(thin), and synaptic capacity CS

ε (dash-dotted). For reference the plots show also network capacity
Cε (thick solid) and matrix load p1ε (dashed). Capacities are drawn either as functions of k for
fixed fidelity parameter ε = 0.01 (a) or as functions of ε for fixed k = 18 (b).
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Figure 6: Capacity measures CI and CS for the compressed Willshaw model in the asymptotic
limit n → ∞. Parameters are as in Fig. 4: m = n, k = l, λ = 1, κ = 0. a : Information capacity
CI

ε (solid line) and synaptic capacity CS
ε (dash-dotted) as functions of the matrix load p1ε. For

reference, the plot shows also network capacity Cε (bold). The maximum of C at p1ε = 0.5 turns
out to be the minimum of CI and CS . For sparse or dense potentiation with p1ε → 0 or p1ε →
both CI

ε → 1 and CS
ε ∼ lnn → ∞ achieve their theoretical bounds. b : Storage capacities Cε,

CI
ε , CI′

ε (thin), and CS
ε as functions of the network size n for pattern activities k(n) = 5 (black)

and k(n) =
√

n (gray) assuming ε = 0.01, cf. Fig. 4b. While Cε → 0 it is CI
ε → 1 and CS

ε → ∞
for both functions k(n). CI′

ε → 1/k = 0.2 for k(n) = 5. CI′

ε → 0.5 for k(n) =
√

n (see table 1).
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Figure 7: Impact of miss noise on the number of storable patterns and the compressibility of the
memory matrix for different p1. Query patterns ũ are assumed to contain λk out of the k original
ones, but no false ones (κ = 0). Here p1 := p1ε(1) is the maximal matrix load for λ = 1 (see
eq. 12). a : Fraction of storable patterns mλ vs. λ (see eq. 34). b : Relative compressibility iλ
vs. λ (see eq. 35). c : For all values of p1 we have cI

λ := mλ/iλ ≈ λ (see eq. 36). d : The error
f(λ, p1) := cI

λ − λ of approximating cI
λ by λ is small (−0.02 < f < 0.06) and even vanishes for

p1 → 0 and p1 → 1.
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Figure 8: Impact of query noise on the retrieval quality of the Willshaw model for m = n =
1000 neurons and different pattern activities k = l = 4, 10, 50, 100, 300 (increasing line thickness)
storing M = 4928, 4791, 663, 207, 27 patterns in each case (corresponding to ε = 0.01 for noiseless
queries). Data are computed from exact error probabilities eqs. 52,53. a : Retrieval quality
εT := (T (k/n, p01, p10)−I(k/n))/I(k/n) as a function of query pattern activity z = (λ+κ)k. The
queries were noiseless for z/k = 1, contained only miss-noise for z/k < 1 (i.e., λ < 1, κ = 0), and
contained only add-noise for z/k > 1 (i.e., λ = 1, κ > 0). The threshold Θ is chosen such that
εT (λ, κ) is minimized. b : Optimal threshold Θopt for minimal εT shown in (a). The plots for ε
instead of εT are qualitatively the same (Knoblauch et al., 2008).
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Figure 9: Approximation quality of our analysis in sections 3 and 4 based on eq. 8 for m =
n, k = l, high fidelity parameter ε = 0.01, when addressing with half address patterns (λ =
0.5,κ = 0). a : Relative approximation quality of the pattern capacity Mε/Mapprox

ε as a function
of neuron number n. The exact value Mε is computed as in table 2 and the approximation
Mapprox

ε is computed from eq. 13. The different lines correspond to different pattern activities
k(n) = 4, ldn,

√
n, n2/3, n3/4, n/4, n/2 (increasing line thickness; alternation of solid and dashed

lines). Approximation quality for network capacity Cε is qualitatively the same. b : Relative
approximation quality similar to (a), but for the information capacity CI

ε . CI,approx is computed
from eq. 18. Approximation quality for the synaptic capacity CS

ε is qualitatively the same.
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Figure 10: a : Asymptotic network capacity C∗
ε , information capacity CI∗

ε , synaptic capacity CS∗,
and pattern capacity M∗

ε as functions of memory load p∗1ε for the model variant with random
query pattern activity. Compare to Fig. 6a. b : Exact and approximative network capacity for
finite network sizes m = n and mean pattern activity k = l = e ln n (thin lines) or k = l =

√
n

(bold lines). For random query pattern activity the plot shows results computed with exact
eq. 65 (C∗; black solid) and binomial approximation eq. 73 (C∗,bin; gray solid). For fixed query
pattern activity the plot shows results computed with exact eq. 58 (CBWSP; black dashed) and
eq. 57 (CKPS; black dash-dotted), the binomial approximation eq. 12 (Cbin; gray dashed), and a
Gaussian approximation of dendritic potentials (Cgauss; gray dash-dotted; see Knoblauch, 2008).
Note that the binomial approximations closely approximate the exact values already for relatively
small networks. In contrast, the Gaussian approximation significantly underestimates capacity
even for large networks.
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