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Abstract — The interplay between modelling and experimental studies can support the exploration of the function of neuronal circuits
in the cortex. We exemplify such an approach with a study on the role of spike timing and gamma-oscillations in associative memory
in strongly connected circuits of cortical neurones. It is demonstrated how associative memory studies on different levels of abstraction
can specify the functionality to be expected in real cortical neuronal circuits. In our model overlapping random configurations of
sparse cell populations correspond to memory items that are stored by simple Hebbian coincidence learning. This associative memory
task will be implemented with biophysically well tested compartmental neurones developed by Pinsky and Rinzel [58]. We ran
simulation experiments to study memory recall in two network architectures: one interconnected pool of cells, and two reciprocally
connected pools. When recalling a memory by stimulating a spatially overlapping set of cells, the completed pattern is coded by an
event of synchronized single spikes occurring after 25-60 ms. These fast associations are performed even at a memory load
corresponding to the memory capacity of optimally tuned formal associative networks ( > 0.1 bit/synapse). With tonic stimulation or
feedback loops in the network the neurones fire periodically in the gamma-frequency range (20—80 Hz). With fast changing inputs
memory recall can be switched between items within a single gamma cycle. Thus, oscillation is not a primary coding feature necessary
for associative memory. However, it accompanies reverberatory feedback providing an improved iterative memory recall completed
after a few gamma cycles (60—260 ms). In the bidirectional architecture reverberations do not express in a rigid phase locking between
the pools. For small stimulation sets bursting occurred in these cells acting as a supportive mechanism for associative memory. © 2000

Elsevier Science Ltd. Published by Editions scientifiques et médicales Elsevier SAS

1. Introduction

It is often argued that the creative interaction
between experimenters and theorists is an impor-
tant factor in exploring the working principles of
the brain [2, 21, 31, 32, 55, 63, 87, 88]. Computa-
tional models can serve as interfaces between bio-
physical  findings and  their  functional
interpretation. Here we will present such an ap-
proach to understand the role of temporal struc-
ture in neuronal responses with respect to
associative memory in cortical circuits.

The nature of spatio-temporal coding in the
cortex is still one of the most basic and still
unresolved questions in brain research (see e.g. [1]
for an overview). There have been suggestions
beyond rate coding, stating that information is at
least in part represented in the exact timing of
single spikes relative to others. Classical examples
are the ‘temporal correlation hypothesis’ by C. von
der Malsburg [80] and the ‘synfire chain’ concept
by M. Abeles. Synfire chains are directly based on
experimental evidence [2], and also stimulus-re-
lated synchronized oscillations in the beta and
gamma range (20-80 Hz) have been found in
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experiments in many cortical areas of various spe-
cies [19, 20, 29, 30, 64, 65, 86]. Moreover, recent
EEG-studies suggest that synchronized gamma-os-
cillations are involved in cognitive processes, like
associative learning and perception [50, 61].

The aim of this paper is to explore the possible
function of spike synchronicity, bursting, and os-
cillations for synaptic associative memory in
strongly connected networks of cortical cells. We
will develop and study an associative memory
model with biophysical compartmental neurones
in simulation experiments. The development of the
simulation model will be based on results from the
literature about more abstracted associative mem-
ory models. Associative memory is one of the best
understood functions of neural networks.

We first review the basic features of associative
neural networks and explain how and under what
assumptions the analysis of abstracted associative
networks pin down associative memory function in
more realistic neuronal networks. In chapter 2 the
derived computational function is implemented in
a biophysically well tested network of two-com-
partment neurones. We discuss relations and dif-
ferences to other models in the literature and
formulate the basic questions to be addressed in
our model. The simulation experiments are de-
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scribed in chapter 3. In chapter 4, we summarize
the main observations and results of our simula-
tion experiments and resume with the more general
conclusions in chapter 5.

1.1. Neural associative memories

The associative memory theory of the cortex has
first been coherently described in informal lan-
guage by D.O. Hebb [31]. Mathematical models of
neural associative networks were first proposed at
the turn of the fifties to the sixties to account for
an important aspect which perception models of
the brain did not reflect, namely the fact that
human memory is associative as well as dis-
tributed. The working principle of an associative
network has three basic features: a) a distributed
self-sustaining representation of information as
claimed in Rashewsky’s reverberation circuit hy-
pothesis [59]; b) synaptic associative learning; and
¢) associative recall [37]. a) An information entity
is represented by a persistent network state, i.c. a
spatially distributed activity pattern. b) To store or
‘learn’ a new information entity, the network ac-
tivity has to be externally driven to the corre-
sponding activity pattern. Synaptic plasticity,
essential to the learning phase, will increase
synapses between activated neurones. c) After
learning the synaptic structure will favour the ap-
pearance of learned activity patterns, which Hebb
called ‘cell assemblies’, and which in the context of
associative memory models are often referred to as
memory patterns. To recall or retrieve a particular
memory pattern one has to stimulate some of its
active neurones. Hebb regarded such a pattern
completion process as a mechanism for a mental
association process.

The first formal associative memory models by
Taylor and Steinbuch focused on modelling Pavlo-
vian conditioning, but did already lay out the
possibility of an artificial implementation of
Hebb’s much more comprehensive theory of men-
tal processes [72—74]. Subsequent associative mem-
ory studies can be characterized by two different
ways how a pattern of dimension n is stored in a
synaptic trace. Inspired by holography some works
suggested the synaptic trace to be a vector of the
same dimension n as the patterns themselves [9,
10, 24, 78]. However, the biologically and techni-
cally more impactful correlation matrix models use
synaptic traces of dimension n? as in the original
‘Steinbuch Lernmatrix’ [4, 40, 41, 54, 91]. They
were the basis of early computational theories of
the cerebellum [3, 47], for the hippocampus [48]
and for cortical networks [90].

1.2. Results from binary associative
network studies

The most extreme abstraction of the behaviour
of nerve cells are binary threshold neurones. They
sum up the synaptic input and determine their
binary output (on or off) by comparing the input
sum with a threshold. The binary neurone model
was broadly introduced by the work of McCulloch
and Pitts [49] and is employed in the most promi-
nent associative memory models, the Willshaw
model [91] and the Little/Hopfield model [35, 45].
In the technical literature the computational func-
tions of binary associative networks are often de-
noted as content addressable memory or matched
filter operations. To assess the efficiency of a par-
ticular implementation of one of these functions,
information theory can be applied on the informa-
tion channel comprising the storage and retrieval
procedure. The capacity of this channel normal-
ized by the number of synapses in the memory
network is called the memory capacity [55, 57].

In the Willshaw model, the memory trace of a
binary memory pattern is the outer-product matrix
and memory traces are superimposed by the logi-
cal OR operation. Thus, the resulting synaptic
strength structure is binary. Synapses are either
potentiated if the coincidence condition was fulfi-
lled in at least one activity configuration, or non-
potentiated otherwise. Willshaw’s analysis yields a
maximum capacity of 0.69 bit per synapse [91].
The analysis is interesting in two regards, see also
[56]. First the superimposed storage of distributed
representations in the model exploits a substantial
part, but not the complete synaptic information
content of 1 bit per synapse. Second the capacity
maximum is achieved only for very sparse pat-
terns, i.e. if a stored configuration prescribes only
activity in a very small portion of the network
neurones.

As a biophysical model the retrieval and learn-
ing in the Willshaw net is not satisfactory. First,
the activity flow during retrieval in the Willshaw
model is feed-forward, just as in a logical gate. In
contrast, the massive feedback in the wiring
schemes known from neuroanatomy suggests itera-
tive update processes during retrieval. Second, the
binary synapses in the Willshaw net appear on the
first sight as very rough descriptions of real
synapses.

Both aspects seem to be better reflected by the
Little/Hopfield model with iterative retrieval dy-
namics and linearly superimposed memory traces
leading to integer valued synaptic values. The iter-
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ative dynamics results in trajectories in the binary
state space that can be characterized by their
asymptotic attractor states, which may be fixed
point attractors, or periodic as well as chaotic
trajectories. Little’s study [45] showed that persis-
tent states corresponding to Hebbian assemblies
are possible depending on symmetry properties of
the interneuronal connectivity. In fact, the coinci-
dence learning rule prescribed by Hebb leads to a
symmetric synaptic matrix for the Hopfield and
for the Willshaw model. In the Hopfield model,
the retrieval dynamics minimizes a simple energy
function where under certain conditions the mem-
ory states are minima. The capacity analysis of the
Hopfield-model yields 0.15 bit per synapse, much
less than the Willshaw model [§8]. However, as it
turned out, this low efficiency has to do with the
choice of unbiased memory patterns in the tradi-
tional Hopfield model comprising 50% active neu-
rones and 50% inactive ones. In the range of
sparse memory patterns, the performance becomes
very similar to that of the Willshaw model: The
maximum capacity in that limit rises to the same
magnitude (0.72 bit per synapse, see [77]). With
sparseness also the synaptic structure becomes
quite similar to that of the Willshaw model, i.e.
most of the synapses just assume the values 0 or 1,
and only a few take higher values.

A sparse associative memory provides not only
high information efficiency and employs biologi-
cally more plausible representations, it also ex-
hibits accelerated recall. The Hopfield model with
unbiased patterns takes hundreds of update cycles
for memory recall [15], a biologically unrealistic
number, given the known time constants in neu-
rones and reaction times in behaviour. The advan-
tage of sparse associative memories in this regard
was first not recognized. It cannot be investigated
by analysis of infinite sized models since finite size
effects become important. For instance, in the
original infinite Willshaw model iterations are use-
less. They do not improve at all the result of the
first step [62]. Finite size studies showed that pro-
vided some threshold mechanism controls the
number of active neurones, iterations improve the
pattern completion [26, 28, 33]. With the sparse-
ness of the memories the number of required itera-
tions drops drastically and with sparseness for
optimal memory capacity less than three iteration
steps suffice [62].

Another objection against the biological realism
of the network models discussed so far is their full
synaptic connectivity, since in the cortex by far not
every neurone pair has a direct connection. How-

ever, it was shown even for strongly diluted net-
works that sparse memory patterns can still be
stored and recalled with high information capacity
[13]. Also for associative networks employing
physiological estimates of neuronal excitability and
anatomical estimates of network size and connec-
tivity of a cortical column, sparse memories are
still processed with high memory capacity [66, §9].

Thus, the results referred so far suggest the
(sparse) feedback Willshaw model as the most
appropriate under the abstract associative memory
models to describe real neuronal circuits. No mat-
ter of the detailed mechanism of superposition of
the memory traces from Hebbian coincidence
learning, sparse memory patterns provide an effi-
cient and therefore robust use of synaptic memory.
Feedback activity flow can improve the recall of
stored patterns, though, the number of helpful
iteration cycles is low. Synaptic dilution preserves
qualitatively the functional properties found in
fully connected associative networks.

But what conclusions can be drawn from such a
model neglecting the temporal response features of
real neurones, and in particular any temporal
structure as found experimentally in neuronal re-
sponses? In this context, argumentation often was
based on a universality hypothesis, ‘the’ credo of
statistical physics proven as justifiable in many
different domains. It assumes that in many-particle
systems microscopic details have only small effects
on the collective behaviour and can therefore be
neglected. A basic factor here are statistical limit
laws valid in large random systems. There have
been attempts to compare results from related
theoretical studies with experimental data, see for
instance [6, 7]. The correspondence, however, is
vague for several reasons. First, cortical neural
associative networks might simply not be large and
homogeneous enough to be subject to statistical
limit laws. Second, electrophysiological measure-
ments at a time are limited to few neurones and
cannot access distributed spatial coding. Not even
the overall activity in a neuronal network has
necessarily to correlate with the activity in single
memory patterns. For instance, it has been shown
that assuming a realistic connectivity, several
memory patterns can be activated and recalled in a
cortical column at the same time [66]. Finally,
statistical physics often assumes statistical indepen-
dence between micro states of a system. This,
however, becomes questionable for neural systems
as soon as one adopts the hypothesis of spike time
coding.
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In the following we will use the results summa-
rized in this section as a guideline for more realis-
tic associative memory models.

1.3. Associative networks with
refined neuronal models

A first step towards more biophysical realism of
computational models are neurones with graded
responses as they already had been proposed in the
earliest works on associative nets by Taylor and
Steinbuch [72—-74]. One can interpret the continu-
ous output variable as the momentary or short-
time averaged spike-firing rate of the neurone.
Associative networks employing neurones with sig-
moid shaped transfer-function have been exten-
sively analysed. It was shown for auto-associative
nets [18, 36, 79] and for bidirectional associative
nets [42] that sigmoid neurones allow the same
collective computations like two-state threshold
neurones. Qualitatively, in terms of the associative
memory task this is true, since the attractors for
continuous-time updating are still (approximately
binary) fixed points. However, it should be noted,
that the freedom of setting the slope of the sigmoid
can be used to improve the access of stored pat-
terns quantitatively. For a particular retrieval situ-
ation the optimal slope can be derived from a
Bayesian analysis [67].

The next step towards biophysical faithfulness
are neurones producing stereotyped spike-like out-
put pulses. In rate-modulated (RM) neurones the
spikes are generated stochastically by a Poisson
process with firing probability depending on the
input spiking rate within a short past interval. In
refractory integrate-and-fire (RIF) neurones the
spike generation is also influenced by the input,
but in addition by the spiking history of the neu-
rone. A spike is produced if the membrane poten-
tial of a cell crosses a threshold, the so-called
‘integrate and fire’ mechanism. After a spike has
been emitted further firing is suppressed within a
certain ‘refractory’ time period. To model jitter of
action potential generation as it appears in real
neurones, in most RIF models some noise is added
to the spike generation process [27, 43, 71, 83].

RM and RIF neurones lead to qualitatively
different collective behaviour in otherwise identical
network architectures. In large randomly con-
nected networks of RM neurones, the ensemble
averaged network activity closely follows that of
an equivalent network of graded sigmoid neu-
rones. Up to fluctuations due to the stochastic
nature of the spike generation, both networks re-

veal the same ensemble averaged collective be-
haviour [5]. In principle also associative networks
with RM neurones can be designed to behave
virtually identical to the corresponding networks
of graded or binary threshold neurones. This can
be done in the simplest way by replacing each cell
in a network of graded response neurones by a
sufficiently large pool of RM neurones (cf. [5]). If
the network connectivity is symmetric as usual in
auto-associative memories and in bidirectional as-
sociative memories, the dynamics then converges
to steady states. In contrast, the identical network
with RIF neurones typically shows collective oscil-
lations at least below a certain noise level. This is,
because these neurones themselves are already in-
trinsic oscillators, which become synchronized by
the mutual connections (e.g. [S1]). The result di-
rectly generalizes to associative memory networks
consisting of RIF-neurones [16, 17, 83]. At high
noise levels their behaviour can be essentially re-
duced to graded response neurone associative
memories, but at lower noise they show a more
complex spatio-temporal spiking behaviour that
critically depends upon the synaptic time delays
and the neurone intrinsical refractory mechanism
[27, 92].

Because they provide a level of description that
at the same time is biologically quite plausible but
nonetheless simple enough to allow for large scale
simulations of neural systems, refractory integrate-
and-fire neurones have been employed frequently
in associative network models addressing informa-
tion processing mechanisms in the cortex as well as
the tentative role of spike timing, synchronization
and network oscillations (review in [83]). For in-
stance, in primary sensory areas synchronization
can support coding of global stimulus features
(e.g. [81]). Beside that, it also increases signal-to-
noise ratios and thereby detection probabilities.
Furthermore, interactions of cell assemblies in and
between cortical areas have been addressed in
compound networks of one or several associative
memories [69, 84, 85]. Here, it turned out that
rhythmic associative retrieval is faster than asyn-
chronious retrieval, robust against noise, and pro-
vides a high memory capacity. Applied to higher
associative areas synchronization further supports
the build up of local a well as global cell assem-
blies (i.e. assemblies distributed over several corti-
cal areas), because the excess of spike coincidences
drives Hebbian learning mechanisms more effi-
ciently than asynchronious spike trains. This has
been shown in network studies modelling the cor-
tico-hippocampal interplay, in especially, ongoing
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learning processes, generalization over stimulus sit-
uations, context learning and memory consolida-
tion [11, 12].

The results summarized in the previous sections
indicate that associative memory is a possible op-
erational mode in networks where simple two-state
neurones are exchanged by spiking neurones. Such
networks reveal all computational properties that
also appear in associative networks of graded re-
sponse or RM neurones. With respect to retrieval
speed and efficiency, however, they outperform
their simpler counterparts, and they show further
properties that that should be useful for cortical
information processing (i.e. binding by synchro-
nization, increased learning rates and SN-rations
due to spike correlations, etc.). Clearly, the role of
spike synchronization and mass oscillations in as-
sociative memory function can only be studied
with RIF networks in the oscillatory mode. In the
referred works this was not the central point, or it
has not been done systematically. Instead of ad-
dressing these questions in RIF neurone associa-
tive network, we will go on to networks employing
more elaborated and biophysically well tested
compartmental neurones.

2. Associative networks
with compartmental neurones

2.1. Biophysical modelling

Hodgkin and Huxley introduced a biophysical
model for the generation of action potentials based
on the voltage dependent ion channels in nerve cell
membranes [34]. Models on this level of descrip-
tion have been developed much further during the
last years. For example, Traub et al. [76] designed
a biophysically faithful nineteen-compartment ca-
ble model of a hippocampal pyramidal cell in area
CA3 of the guinea pig. Each iso-potential com-
partment contained up to six ionic conductances
that were controlled by ten channel-gating vari-
ables. The kinetics of these variables had been
fitted to voltage clamp data from CA3 slices and
other slice preparations. Conductance densities
where chosen consistent with current clamp
recordings from soma and dendrites of whole neu-
rones, and from isolated apical dendrites. Mean-
while, very similar models have also been proposed
for neocortical cells, although there, anatomical
and physiological cell parameters are, of course,
slightly different [60]. Nonetheless, the principal
dynamical modes of such elaborated neurone

models are comparable (cf. e.g. the simulations in
[58, 60, 76] for hippocampal and neocortical cells).

Compared to refractory integrate-and-fire neu-
rones, compartmental neurone models clearly
show a much richer dynamic behaviour. In Traub
et al. [76] and Rhodes and Gray [60], complex
types of low-frequency bursting are investigated
which are not observable in simple spiking neu-
rone models. The complex types of bursting, how-
ever, appear already in simpler neurone models:
Pinsky and Rinzel [58] reduced Traub’s model
heuristically to only two galvanically coupled phe-
nomenological compartments, modelling the soma
and the dendrites of a neurone, see figure 1. This
reduced model reproduces quite faithfully the stim-
ulus-response properties of Traub’s model cells, to
be more specific, those responses induced by
steady somatic and steady dendritic current injec-
tion (other input modes were not tested). The
model includes realistic synaptic transmission
characteristics, i.e. synaptic time constants, rever-
sal potentials and other properties of AMPA and
NMDA synapses. The reduced model furthermore
has the practical advantage that it is computation-
ally simple enough to be employed in network
simulations. In Pinsky and Rinzel [58], a biophysi-
cal study was performed using a simulated net-
work of 100 cells, randomly connected with a
synaptic density of 20% (2 000 of the 100(100 — 1)
connections possible between cell pairs were ran-
domly chosen and assigned to the same positive
value). All cells further received a constant in-
hibitory soma current. If the soma of a single
neurone was stimulated by a brief excitatory cur-
rent, the network responded with synchronized
population bursting in the gamma range that per-
sisted for 400 ms or longer, depending on the
maximal NMDA conductance. The NMDA
synapses hence provided a persistent excitation,
but the phase coupling between the bursting cells
was provided by fast AMPA mediated currents.
Blockade of the AMPA synapses lead to a desyn-
chronization of the bursts. Thus, the simplified
Pinsky-Rinzel network reflects a property that has
already been demonstrated in slice experiments by
Traub et al. [75]: the fast AMPA synapses provide
the coupling mechanism responsible for burst and
spike synchronization.

2.2. Functional modelling and
questions to be addressed

Computational models of associative memories
employing compartment neurones and a descrip-
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tion of the active membrane properties a la
Hodgkin-Huxley have been proposed in several
previous studies (for instance, [38, 39, 44]). In
these works, the computational function was only
defined on the basis of rate coded patterns and it
was not asked how the additional repertoire of
time coding present in associative networks of this
complexity contributes to associative memory
function. As already discussed, rate coding might
be appropriate if the neural units in the model
simulate not single cells but whole cell groups, like
cortical columns as proposed by Fransén and
Lansner [23]. These studies can barely address
questions about the functional role of the temporal
fine structure of single cell activity.

The simulation studies presented in the sequel
differ to previous studies with respect to the design
of the computational model and with respect to
the questions they address. We use the biophysi-
cally very well confirmed neuronal model devel-
oped by Pinsky and Rinzel [58] but assume that
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their connection weights are formed in a Hebbian
learning process. The underlying associative mem-
ory task and the simplistic learning procedure are
specified using the results from studies on more
abstract associative networks revisited in the Sec-
tion 1. Thus, the model combines much of the
known biophysics of single neurones with the
functional hypothesis of associative memory. The
questions that can be addressed by such a model
are in particular:

- What is the function of spike synchronization,
bursting and oscillations?

-~ What is the role of structured feedback
connectivity?

- How does the information theoretical perfor-
mance compare with formal models?

3. Simulation experiments

In this section, we present simulation experi-
ments of small cortical networks comprising bio-
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Figure 1. Scheme of a Pinsky-Rinzel neurone (cf. [58]) and plots of its qualitative behaviour. The upper left plot depicts the dendritic
and somatic compartments with the different active ion-currents and synaptic inputs. A single neurone is capable of firing repetitive
complex bursts (lower left and upper right plot). In a network of synaptically connected cells these bursts synchronize, but not the
individual spikes constituting the respective bursts: the lower right plot shows soma potentials of two cells out of at total of 100

neurones. (Scales: time is in 0.1 ms, potentials are in mV).



F.T. Sommer, T. Wennekers / Journal of Physiology 94 (2000) 473488 479

physical conductance based compartment neu-
rones developed by Pinsky and Rinzel [58]. The
computational capabilities of networks with two
different architectures are tested: an auto-associa-
tive and a bidirectional network.

3.1. The simulation model

The associative memory model used in the fol-
lowing employs the two-compartment neurone
model of Pinsky and Rinzel (PR neurone) [58]
where the exact dynamic equations and all
parameter settings can be found. We employ a
network of 100 excitatory cells with parameter
settings exactly as in Pinsky and Rinzel [58] but
extend it to an associative network by the follow-
ing modifications: a) the network connectivity is
structured assuming common cortical wiring
schemes and Hebbian learning; b) the inhibition is
not constant but moderates the network activity;
and ¢) we apply external stimulation by current
injection to subsets of the network cells.

3.1.1. Structured network connectivity

In the auto-associative wiring scheme described
in detail in Section 3.2, the cells were completely
interconnected. This reflects a configuration of
cells in close vicinity of each other, i.e. within a
cortical column. Neuroanatomical studies have es-
timated a mean density of synaptic contacts of 0.1
between cells with distances lower than the radius
of a cortical column [14]. Full connectivity is used
since among the roughly 10° pyramidal cells in a
column, subnetworks will exist with connectivity
much higher than the mean. These subnetworks
are the most probable candidates to co-operate in
a computational function.

In Section 3.3, we examine a bidirectional wiring
scheme. Apart from cortical circuits formed by
local connectivity, anatomical studies suggest an-
other common cortical wiring scheme providing a
strong internal coupling within a set of excitatory
cells: a pair of cell groups that project on each
other reciprocally. Such wiring schemes can be
expected between cell groups of different cortical
layers, distant patches in the same area, or be-
tween cell groups located in different cortical ar-
eas. The latter expectation is motivated by the
following anatomical findings [70]: 1) the majority
of cortico-cortical connections have been reported
to be reciprocal [22]; and ii) projections are patchy
with patch sizes comparable to the size of cortical
columns [46]. We modelled reciprocal connectivity
by a wiring scheme where the cells were divided

into two groups A and B of fifty cells each that
mutually projected onto each other. Within the
groups there were no excitatory connections. Each
of the cell groups had its independent inhibitory
components, acting as in the network of the auto-
associative wiring scheme.

For both wiring schemes we assume that con-
nected cell pairs have synapses in both directions.
In a local network the spatial vicinity of the cell
bodies makes multiple synaptic contacts probable.
For the reciprocal circuit between two cell group
such a property could be provided by mechanisms
like activity dependent guidance of axonal growth
during early development. However, the patchwise
correspondence of reciprocal connections has not
yet been investigated experimentally.

The transmission efficacy of synapses are
formed in a Hebbian learning phase preceding the
retrieval trials. We used the clipped synaptic mod-
ification of the Willshaw model, driven by a set of
on/off activity configurations (memory patterns)
presented to the network. The configurations were
random and overlapping, i.e. each contained a
fixed number of active cells and each cell could be
active in more than one memory pattern. In the
auto-associative scheme we used memory patterns
with k=10 active neurones, in the bidirectional
scheme the memory pattern pairs had ten active
neurones in each of the two cell groups. Excitatory
synapses terminated on the dendrite-like compart-
ment and activated AMPA- and NMDA-mediated
currents as in Pinsky and Rinzel [58]. Since only
ten cells constituted a memory pattern synaptic
strengths had to be scaled appropriately such that
a single spike evoked a maximum postsynaptic
conductance change of 0.09 mS-cm~2 for AMPA
currents inducing EPSP-amplitudes of roughly 5
mV. NMDA conductances quickly saturated un-
der retrieval conditions [58]. The simple learning in
our model allowed the direct comparison of the
retrieval efficiency with the theory of the simple
and the feedback Willshaw model [57, 62].

3.1.2. Inhibitory system

The role of inhibition to modulate excitatory
network activity is based on the assumption that in
a local network, disynaptic loops from principal
cells to interneurones and back should provide an
amount of inhibition that depends roughly propor-
tionally on the total network activity. Such
threshold control keeps the network activity from
unphysiological states where more than a sparse
fraction of cells fire at high rates. As explained in
the Section 1 it furthermore improves the efficiency
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of associative memory [33, 57, 62, 81]. Technically,
in the simulation model, we do not need to imple-
ment interneurones individually, but instead as-
sume that action potentials of principal cells evoke
not only EPSPs on their target cells, but also —
via inhibitory loops — IPSPs on all cells in the
network. Accordingly, any spike of a principal cell
evokes equally weighted IPSCs into all principal
cells. These inhibitory synapses employed a fast
GABA-ergic conductance change with reversal po-
tential Vo;= — 75 mV and a shape resembling an
alpha function with a maximum conductance
2

change of 0.17 mS-cm —2.

3.1.3. External network stimulation

During a retrieval trial a subset of stimulated
cells with varying overlap to one of the memory
patterns was selected. Since different stored pat-
terns could overlap the stimulation subset had also
random overlaps to other memories. For a defined
period of time the cells in the stimulation subset
received depolarizing dendritic input (modelled by
Poisson processes) strong enough to evoke steady
firing. To judge the recall of a stored activity
configuration, we calculated its transinformation
to instantaneous network states (spike/no spike).
We normalized by the information content of a
stored activity configuration (in our case 36 bits)
and called this quantity retrieval quality or simply
‘quality’ in the remainder. In the bidirectional
network we stimulated cells only within one of the
cell groups.

3.2. Results for the auto-associative network

We first present simulation results for a single
pool of neurones with Hebbian auto-associative
connectivity. A set of patterns is stored prior to
the shown simulations by means of coincidence
learning. During a retrieval experiment a subset of
cells with a defined overlap / to one memory
pattern received depolarizing dendritic input.

Figure 2 displays spike trains of two cells in the
network for /=15 out of a total of k = 10 ones per
pattern. The upper cell receives direct afferent
input, i.e. it is one of the five directly addressed
neurones. The second cell receives only input from
internal connections. Because it belongs to the
addressed memory pattern its synapses to the di-
rectly stimulated neurones are potentiated and if
these neurones fire the internal synaptic input into
the second neurone is strong.

First, note that the spiking rates are in the
gamma range and that the cells are synchronized

20mv
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Figure 2. Typical soma-potentials (spikes truncated) for P = 50
and /=5. The upper cell receives direct external addressing
input, the lower cell belongs to the rest of the addressed
memory pattern. At time /=95 ms, stimulation switches to
another address.

within a time-window of a few milliseconds. This is
merely a consequence of the synaptic time-con-
stants of both, the excitatory and inhibitory PSPs.
The spikes are phase-locked but the spike of the
second cell is delayed due to synaptic integration
on the cell membranes. Here, essentially the time-
constants of excitatory PSPs on the soma matter.
Afterwards cell firing is suppressed as long as the
inhibition build up by the excitatory burst itself
keeps the neurones below firing threshold. So, the
frequency of the collective oscillation in this simu-
lation is basically determined by the relaxation
time of inhibitory PSPs and the recurrent excita-
tory transmission steps (cf. also [86]).

Half time in the sweep displayed in figure 2, at
time 100 ms, the external stimulation switches to
another stimulus pattern. The new stimulus ad-
dresses five neurones of a second, randomly gener-
ated memory pattern. The two neurones shown in
figure 2 are not part of this pattern. Notably, the
cell responses follow the stimulus withdrawal im-
mediately, that is, there is no afteractivation of the
first memory pattern, which would be expressed,
for instance, in an ongoing spiking of the neurones
(cf. e.g. [38]). Instead, only sub-threshold mem-
brane-oscillations remain, which are caused by
cross-talk from the new activated memory pattern:
Since the memory patterns have mutual overlap
there are potentiated synapses even between neu-
rones not belonging to the same pattern. The
membrane potential increase by cross-talk EPSPs
is again followed by inhibitory phases. Thus, the
rhythmic potential fluctuations in figure 2 for times
larger than 100 ms consist of superimposed excita-
tory and inhibitory PSPs. During the first 100 ms,
these fluctuations are stronger because the neu-
rones belong to the addressed memory pattern; in
fact, there they are strong enough to evoke spiking
activity in the respective assembly of memory
neurones.
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This can be seen more clearly in figure 3. The
lower frame of figure 3 shows a raster-plot of the
soma potentials for all neurones in the network
during the same stimulation event as in figure 2.
Time runs from left to right and the y-axis counts
the neurones. Soma potentials are grey-value
coded where white denotes high potentials during
spikes and black denotes hyperpolarization. Neu-
rones 1, ..., 5 constitute the first address pattern,
neurones 1, ..., 10 the corresponding complete
memory pattern. Rows 1 and 6 in figure 3 corre-
spond with the potential traces shown in figure 2.
Again one can see that directly stimulated cells fire
first and the internally driven cells belonging to the
same pattern come up a few milliseconds delayed.
The time synchronization among the internally
driven cells is tighter since the internal connection
convergence and divergence averages over the time
dispersion within the set of directly stimulated
cells.

The retrieval quality is displayed in the upper
frame of figure 3. The quality plot quantifies a fact
already obvious in the raster-plot. The repeated
retrieval events yield higher quality than the first
completion process just after stimulus onset (at
times around =10 ms and =110 ms). Pre-
sumably this is due to the slower neuronal vari-
ables that become better aligned after the first

population burst. These first bursts after stimulus
switch contain considerably more than the ten
ones of the addressed memory patterns, which
lowers the retrieval quality. During later retrieval
phases adaptation processes in the neurones im-
prove the quality, but also during these periods
spurious ones appear occasionally. Thus, the pat-
tern recall is cleaned up with respect of spurious
activity with the second and further retrieval
phases. Furthermore, one observes that the quality
often assumes a sharp maximum in the first part of
individual retrieval periods. This means that the
correct cells respond somewhat earlier than spuri-
ous cells and could therefore, in principle, be
segregated in further processing stages (for in-
stance by coincidence detection).

Figure 4 compares the memory capacity of the
model achieved with different addresses and vary-
ing memory load P. For high P and low numbers
of address bits (stimulated neurones), the capacity
drops because the few input bits do not suffice to
determine the addressed memory pattern uniquely.
Hence, the retrieval quality is impaired.

The longer the plateau in the capacity curve, the
better is the input fault tolerance of the recall
process. Up to a load of P =50, we find a pro-
nounced input fault tolerance and the correspond-
ing memory capacity is close to 0.1 bit per

1.00
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T 0.50
3
T 0.25
0.00
0 50 100 150 20

SUA

0 50 100
time/[ms]

0 Figure 3. Raster-plot of soma-po-

tentials of all cells for P =50, k =
10, and /=5. Neurones 1, ..., 5
constitute the first address pattern,
neurones 1, ..., 10 the correspond-
ing memory pattern. Note that ac-
tion potentials (white dots) are not
perfectly synchronized. The spikes
scatter over several milliseconds
mainly caused by excitatory synap-
tic transmission: address neurones
1, ..., 5 always fire first and trigger
the cells 6, ..., 10. Since for P = 50,
the memory load is high, retrieval is
impaired by cross-talk, i.e. ‘qual-
ity’ <1. The quality is measured
continuously for spikes within the
previous 7 ms.
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Figure 4. Memory capacities for different numbers of active
address neurones and increasing memory load; P =20, 30, ...,
70; /=1, 2, ..., 10; N=100; k=10. The capacity is derived
from the transinformation in spike patterns, averaged over ten
retrieval periods for ten randomly selected addresses.

synapse. This is a striking result since for P =50
the synaptic storage has reached the theoretically
optimum where 50% of the synapses have been
potentiated. The theoretical optimum could even
be approached more closely in our model with an
optimized memory pattern size k which is lower
than k=10 for a network size of N=100 neu-
rones. (Note, that for finite size networks, the
theoretical optimum is below the earlier mentioned
asymptotic limit of 0.69 bit per synapse. For in-
stance, with a size of 512 cells the optimum is 0.4
bit per synapses, see [57].)

3.3. Results for the bidirectional network

In a second series of simulation experiments, we
used a bidirectional network architecture connect-
ing two cell populations A and B and a somewhat
different stimulation scheme. We stimulated cells
only in cell population A. Unlike the previous
experiments in Section 3.2, the stimulation was not
permanent but was restricted to a brief period of
25 ms. After that the input was turned off. To test
robustness of the retrieval against spurious input
we used not only subsets of memory patterns for
stimulation but also patterns containing more neu-
rones than the memory pattern (i.e. additional
random bits). This test is critical, because in the
Willshaw model the retrieval quality is consider-
ably more sensitive against additional activity than
against missing activity [62]. To assess retrieval
performance we compared only the activity state
in the non-addressed cell group B with the respec-
tive stored configuration. High quality retrieval in
this cell group is obviously impossible with bad

retrieval in the directly addressed cell group, since
the only input to B consists of the activity in A.
The model was symmetrical with respect to the
two cell groups. All neurone and network parame-
ters were set to identical values in both groups
with the exception of the afferent input, which was
only supplied to cell group A.

We conducted experiments using stimulation
patterns of different sizes and recorded the net-
work activity over a 500-ms interval after stimulus
onset. Typical time courses of soma potentials
induced from different stimulation patterns are
displayed in figure 5.

About 25-40 ms after stimulus onset, the first
synchronized wave of induced activity arrived in
cell group B. Subsequently, the activity propagated
back and forth through the reciprocal connections,
influencing the activity configurations of the rhyth-
mic synchronized spike events in both cell groups.
The spike frequencies were in the gamma band
(30-90 Hz) just as in the experiments in Section
3.2. This is not surprising, since network parame-
ters in the bidirectional model were virtually the
same than those chosen for the single pool in the
previous section. We observed spike synchroniza-
tion within each cell group but we did not find a
phase locking between the groups. Neurones that
did not experience external input showed regular
spiking. In contrast, neurones receiving afferent
input showed a tendency to burst. This tendency
increased with decreasing size of the stimulated
population mainly caused by a reduced inhibition.
In figure 5 with small stimulated input sets, popu-
lations 5a and 5b produce bursting in the first
gamma cycles, while larger stimulated populations
in 5¢ and 5d do not. This provides a mechanism of
activity balance in the secondary layer. In a wide
range of stimulation pattern size (we tested stimu-
lations comprising between two and twenty cells
receiving direct current injections) the recall qual-
ity was high without any adjustments of network
parameters. Thus, bursting can enhance the input
fault tolerance of association processes by balanc-
ing the network activity induced by different stim-
ulation pattern size.

To judge the performance of the fastest possible
response (we call this one-step retrieval since only
monosynaptic activity propagation to cell group B
is involved), we determined the quality maximum
in the first wave of activity. To monitor the results
provided by iterative activity flow between the cell
groups (the bidirectional retrieval mode), we also
detected the quality maximum over the whole
recording sequence. The following figure shows the
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experimental results resolved for different stimula-
tion conditions.

Diagrams a and c in figure 6 display the mea-
sured quality values. A quality equal to one corre-
sponds to perfect retrieval. At the memory load
examined, it translates to a synaptic storage capac-
ity of 0.295/2 =~ 0.148 bit/synapse. The divisor of
two is due to the fact that bidirectional transmis-
sion requires two biological synapses.

Diagram a compares the first quality maximum
with the performance of the Willshaw model (a
feed-forward network with binary synapses) at the
same memory load. The curve is computed for
constant activity threshold setting using the theory
from Sommer and Palm [68]. The fact that the
quality curves stay somewhat below one indicates
that the load in both networks is near the maxi-
mum, cross-talk is already setting in, even in asso-
ciations with perfect address. By the additional
noise in the biological model its maximum capac-
ity is decreased by 10% to 0.27/2=0.135 bit/
synapse. Also the fault tolerant association
capability is impaired, only slightly for lower, but
substantially for higher input activities. The ques-
tion underlying the measurements displayed in dia-
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gram b) is whether bidirectional activation cycles
in the network can improve retrieval quality. In
fact, for very small as well as in the entire range of
high input activity the quality maximum is always
achieved by iterative retrieval. For very small (/=
2.3) and for large input activities (12 </<20)
iterative retrieval improved the retrieval result in
between 70 and 80% of the simulation runs.

The diagrams c¢) and d) compare the quality and
retrieval time of one-step and iterative retrieval in
the Pinsky-Rinzel neurone network. The iterative
retrieval performs better in all cases. Most signifi-
cantly, the fault tolerance with respect to higher
input activity can be significantly improved by
iteration. Of course, the required retrieval time
increases from 25-60 to 60—260 ms depending on
the input condition.

4. Summary

In our model, in cells with strong postsynaptic
input the AMPA-mediated part of the EPSPs
causes the synchronized spike events via selective
associative connections. Thus, if the set of cells
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externally stimulated has enough overlap with a
stored memory, the pattern of induced synchro-
nized spike events resembles the memory pattern
quite closely. One finds only a few milliseconds of
time lag between spike events in different cells
belonging to one memory. This suggests to con-
sider such a synchronized population spike as an
elementary association or retrieval process. The
larger the set of spiking cells in the network the
stronger inhibition builds up until it finally sup-
presses further spiking. Nonetheless, if afferent
excitation persists or if there are selective excita-
tory feedback connections, after decay of the inhi-
bition another population burst appears due to the
slow dynamic mechanisms. We observe this rhyth-
mic activity caused by the interaction between
excitatory and inhibitory cells to fall in the
gamma-frequency range (20—80 Hz), just as in the
random connectivity network where inhibition was
constant [58]. All our experiments demonstrate
that biologically realistic neural associative net-
works store and retrieve sparse patterns with al-
most the same memory capacity as formal
associative memories. We chose an auto-associa-
tive and a bidirectional network architecture for
closer inspection by simulation experiments.

The auto-associative scheme was chosen to
study a local cortical circuit receiving tonic affer-
ent stimulation. A variable number of cells in a
memory receive steady but noisy current injections
(supplied by Poissonian input spike processes).
The first synchronized spike event provides already
a reasonable estimation of a memory pattern, but
contains some erroneous responses of non-ad-
dressed cells. The second synchronized spike event,
i.e. the second gamma cycle after stimulus onset,
provides the memory with increased quality. The
improvement is due to the alignment of the slow
neuronal variables (neuronal adaptation) that re-
quires more than one gamma cycle. With the input
strength used, the quality in the cycles after the
second stays almost constant and the time lag
between primary and secondary driven cells is
almost the same in all cycles. This implies that the
internal wiring provides a feed-forward like com-
pletion of the addressed memory pattern starting
from the directly driven cells. The internal feed-
back plays no other significant role. If the stimulus
is changed to another spatial pattern the network
switches within one gamma cycle to the new pat-
tern. This suggests that tonic stimulation over
more than two gamma cycles cannot evoke addi-
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tional internal computational mechanisms. On the
other hand, the maximum readout speed is just
limited by the gamma rhythm: with fast input
switching one could reach one memory pattern
every cycle, though, not with maximum quality.
The bidirectional wiring scheme addressed the
possible computational processes in reciprocally
connected cortical structures. Cells only in one
group received noisy current injections. Unlike in
the previous experiment, the current injections
stopped after a short time period (25 ms), and the
set of stimulated cells was not a subset of one
memory pattern. The latter was to test the robust-
ness of the associative memory function not only
against missing but also against spurious activity.
Since the stimulation was switched off, the spike
events following the first response reflect feedback
over the reciprocal connections. We evaluated re-
trieval quality in the first response finished after
25-40 ms, and by iterative recall. The first re-
sponse realizes unidirectional retrieval quite simi-
lar to the Willshaw model. Unsurprisingly, the
additional noise sources impair the performance of
the biological model and the performance drops
below that of the Willshaw model. This impair-
ment is mild for error-free addressing and small
stimulation sets. In the latter case bursting of
directly stimulated cells turned out as a mechanism
to enhance the performance. A small number of
stimulated cells evokes only a relatively low net
inhibition that allow the cells to burst. This com-
pensates for the small number of stimulated cells.
The performance of the first response drops more
drastically for retrieval trials with spurious input
activity. This is a biologically relevant case since
spontaneous stochastic activity of cortical cells, as
well as interferences from other associations in the
same network, increase the network activity.
Nonetheless, the simulations show that the re-
trieval is robust against a considerable amount of
background noise provided this way. Iterated re-
trieval turned out as an effective means to improve
first response retrieval, in particular, in the regime
of imperfect stimulation. In this regime the quality
of first response retrieval was suboptimal in 70 to
80% of the performed retrieval trials but iterated
retrieval in an individual trial was able to correct
most of the appearing errors. In these simulations,
we observed no rigid phase coupling between the
pools. Apparently, the AMPA mediated fast PSP
component was not strong enough for a phase
coupling of the pools, the NMDA component was
too slow, and the separate inhibitory systems of
the two pools also did not provide means for

synchronization. Overall, our experiments suggest
that two different modes of retrieval are possible: a
quick unidirectional, and a more precise iterative
mode. Experimentally they should be discernible
by latency measurements: In our model, the first
response required from 25-60 ms and iterative
retrieval lasted 60-260 ms, up to ten gamma
cycles.

5. Discussion and conclusions

This paper presents a novel modelling approach
to reveal the function of the spatial and temporal
structure of neuronal activity, in particular, spikes,
synchronization and oscillations in the context of
cortical associative memory. We propose associa-
tive network models for small groups of cortical
cells employing the quite faithful biophysical de-
scription of neurones and synapses by Pinsky and
Rinzel [58] and the rather simplified version of
Hebbian synaptic learning of the Willshaw model
[91]. This model choice as well as the specification
of the computational task with sparse memory
patterns are established on results from associative
memory studies using neurones with stereotyped
outputs summarized in the Section 1.

The aims of this associative memory study are
to understand the functional role of spike synchro-
nization and gamma-oscillations, and to compare
the efficiency of a biologically realistic network
model with a simple formal model. It has to be
emphasized that associative memory and gamma
rhythms observed in the simulations are not a
surprise but a result of the functional and biophys-
ical ingredients in our model. The biophysical
ingredients, however, are borrowed from well es-
tablished models of real neurones.

In the light of our model, a synchronized spike
event indicates a fast associative retrieval process.
Tonic input evoked sequences of repetitive associa-
tive processes in the gamma-frequency band. Nei-
ther the frequency of the repetitions nor the
periodicity of the processes at all are crucial for a
proper functioning of the network. Nonetheless,
fast repetition times in principle allow for fast
switches between different memory patterns. By
fast switching between stimuli the readout speed
can be increased up to the point where every one
or two gamma cycles a new pattern is elicited. In
this case spike trains of individual cells show no or
only very short phases of gamma-activity.

Short input flashes followed by silence evoked
gamma spike trains in single cells with a functional
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meaning: They correspond to reverberation pro-
cesses that can improve the retrieval quality, in
particular, for noisy input patterns. This is consis-
tent with Amit [7], where reverberations in local
networks in IT have been used to explain electro-
physiological data recorded during delayed
matched to sample tasks.

Our experiments further revealed that bursting
of stimulated cells might play a role in activity
control. When only relatively few cells in the net-
work are externally stimulated the overall level of
depolarisation is low and cells show an increased
tendency to burst. These bursts can in part ac-
count for the reduced input activity such that the
addressed cells that do not receive external input
can still reach firing threshold. In some sense this
normalizes the total activity in the set of externally
addressed neurones which enables a proper net-
work response for a large range of address pattern
sizes.

This study compares quantitatively the informa-
tion theoretical efficiency between a formal neural
network, the finite Willshaw model, and a same
sized neural network employing neurones with de-
tailed biophysical properties. As it turns out the
efficiencies are of comparable order of magnitude.
With iterative retrieval over a few gamma cycles
the biological associative network outperforms the
Willshaw model. Our study demonstrates that
sparse associative memory tasks can be efficiently
and fast performed in circuits of biological realistic
neurones. Of course, our study cannot not exclude,
that also associative memories more efficient than
the simple feedback Willshaw model could be real-
ized biologically, for instance, crosswise bidirec-
tional retrieval [68], or even efficient non-sparse
associative memories like those with non-local
learning [25] or with non-monotonous response
neurones [52, 53].

The behaviour of the studied model turned out
to be robust against different kinds of noise, too.
The simulation experiments included noise in the
external current injections, variations in the prop-
erties of individual pyramidal cells (cf. [58]), cross-
talk due to overlapping memory patterns, and
spurious external input (i.e. missing and spurious
bits in address patterns). Clearly, the stronger
these noise sources, the smaller the obtainable
memory capacity will be, but this applies to any
associative memory model. If noise influences are
increased to an extent that synchronization is lost
we are back in the simpler regime that is already
well described by graded neuronal associative
memories. Such networks lack the ability of fast
retrieval described in the present work.

The synchronous single-spike event coding of
the retrieved patterns in our model is in contrast to
coding by adjusting phases of periodically firing
neurones as proposed to interpret gamma-oscilla-
tions by feature coding [19, 65, 86].

The interpretation of gamma-oscillations as se-
quences of fast individual retrieval processes car-
ried by associative excitatory connections and
rhythmically interrupted by inhibitory interneu-
rones has been already proposed based on simula-
tion experiments in simpler models [81-83, 85].
Nevertheless, the phases of gamma-rhythmic rever-
berations of memory patterns in different cortical
networks could be influenced by additional cortical
mechanisms to code binding or separation of
memory items.
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