Ali Eslami
Univ of Edinburgh
Probabilistic models of object shapes
Friday 14th of December 2012 at 03:00pm
Evans Room 560
We address the question of how to build a 'strong' probabilistic model of object shapes (binary silhouettes). We define a strong model as one which meets two requirements: 1. Realism – samples from the model look realistic, and 2. Generalization – the model can generate samples that differ from training examples. We consider a class of models known as Deep Boltzmann Machines and show how a strong model of shape can be constructed using a specific form of DBM which we call the 'Shape Boltzmann Machine' (ShapeBM).
We also present a generative framework for modelling images of objects using an extension of the ShapeBM. Our model employs a factored representation to reason about appearance and shape variability across datasets of images. Parts-based segmentations of objects are obtained simply by performing probabilistic inference in the proposed model. We apply the model to two challenging datasets which exhibit signiï¬cant shape and appearance variability, and ï¬nd that it obtains results that are comparable to the state-of-the-art.
Joint work with Chris Williams, Nicolas Heess and John Winn. URL: http://arkitus.com/Ali/(video)
Join Email List
You can subscribe to our weekly seminar email list by sending an email to
majordomo@lists.berkeley.edu that contains the words
subscribe redwood in the body of the message.
(Note: The subject line can be arbitrary and will be ignored)