HOME MISSION AND RESEARCH PUBLICATIONS HISTORY PEOPLE SEMINARS COURSES VIDEO ARCHIVE CONTACT

Oriol Vinyals
Computer Science, UC Berkeley

Beyond Deep Learning: Scalable Methods and Models for Learning

Thursday 31st of October 2013 at 12:00pm
560 Evans

In this talk I will briefly describe several techniques I explored in my thesis that improve how to efficiently model signal representations and learn useful information from them. The building block of my dissertation is based on machine learning approaches to classification, where a (typically non-linear) function is learned from labeled examples to map from signals to some useful information (e.g. an object class present an image, or a word present in an acoustic signal). One of the motivating factors of my work has been advances in neural networks in deep architectures (which has led to the terminology "deep learning"), and that has shown state-of-the-art performance in acoustic modeling and object recognition -- the main focus of this thesis. In my work, I have contributed to both the learning (or training) of such architectures through faster and robust optimization techniques, and also to the simplification of the deep architecture model to an approach that is simple to optimize. Furthermore, I derived a theoretical bound showing a fundamental limitation of shallow architectures based on sparse coding (which can be seen as a one hidden layer neural network), thus justifying the need for deeper architectures, while also empirically verifying these architectural choices on speech recognition. Many of my contributions have been used in a wide variety of applications, products and datasets as a result of many collaborations within ICSI and Berkeley, but also at Microsoft Research and Google Research.
(video)


Join Email List

You can subscribe to our weekly seminar email list by sending an email to majordomo@lists.berkeley.edu that contains the words subscribe redwood in the body of the message.
(Note: The subject line can be arbitrary and will be ignored)