Learning with general recurrent

neural networks
Guy lsely






Feedforward neural networks are
timeless’”
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Some problems with a feedforward
model of temporal processes

» Computational cost grows with temporal duration
modeled

» Can't capture long-time contextual dependencies
N sequences

» Networks don't have persistent state— "noise
correlations’” might be statel



« Autonomous after initial

Hopfield networks have fixed-
point attractor dynamics

* Dynamics are gradient
descent on an energy
function (the lyapunov
function)

Input

» Guaranteed to converge 1o a
stable fixed point due to
symmetric connectivity
matrix




Can we you use gradient descent
to train general RNNs?

Yes, yes we can!

...but there's a wrinkle.



Backpropagation review
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Can we apply backpropagation
directly to an RNN/?

» Not exactly— the gradient of a RNN's error function
w.rt. to the weights depends on the network's state at
all previous time steps.

« But we can unravel the network structure in time to
oet a feedforward network and perform backprop on
this network.

» This is called backpropagation through time (BPTT).






Realtime recurrent learning
(Williams and Zipser [989)
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» Downside: BPTT is O(tn?) per time step but RTRL

s O(n?) per time step— prohibitive for large

networks!



Intermission
(aka neural network winter)



Reservolr computing

Fcho State Networks Liquid State Machines
(Jaeger & Haas 2004) (Maass et al. 2002)
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|deas from Echo State Networks

» Use an unoptimized random sparsely connected

Bdllfecnt reservolr and do a linear readeus

* Only optimize the readout weights.

 Use teacher forcing to achieve appropriately
tuned the reservoir dynamics



BP T I returns (with a vengeance)



VWhere to next!

* Address vanishing/exploding sensitivity problem with network

units designed for specific temporal dynamics (e.g.
Short Term Memory)

Long

- Move beyond gradient descent based approaches to

optimizing network parameters

* Incorporate addition biophysical features of real networks
(e.e. STDRE metabotropic receptor dynamics, gap junctions,

dendritic non-linearrties)



