
Learning with general recurrent
neural networks

Guy Isely

Feedforward neural networks are
“timeless”

664
Chapter 40

Output Units

/ k /
CCOXO

Processing Unit

b

Total Input E

Figure 1 (a) Schematic model of a processing unit receiving
inputs from other processing units. (b) Transformation between
summed inputs and output of a processing unit, as given by Eq. 2.

speech. The model, which we call NETtalk, demon-
strates that a relatively small network can capture most
of the significant regularities in English pronunciation
as well as absorb many of the irregularities. NETtalk
can be trained on any dialect of any language and
the resulting network can be implemented directly in
hardware.

We will first describe the network architecture and
the learning algorithm that we used, and then present
the results obtained from simulations. Finally, we dis-
cuss the computational complexity of NETtalk and
some of its biological implications.

Network ~rchitecture

Processing Units
The network is composed of processing units that non-
linearly transform their summed, continuous-valued
inputs, as illustrated in Fig. 1. The connection strength,
or weight, linking one unit to another unit can be a
positive or negative real value, representing either an
excitatory or an inhibitory influence of the first unit on
the output of the second unit. Each unit also has a
threshold which is subtracted from the summed input.
The threshold is implemented as weight from a unit
that has a fixed value of 1 so that the same notation
and learning algorithm can also be applied to the
thresholds as well as the weights. The output of the ith
unit is determined by first summing all of its inputs

E i = 1 WijP j
j

(1)

where wij is the weight from the jth to the ith unit, and
then applying a sigmoidal transformation

H ~ d d e n Units

Input Uni ts

Figure 2 Schematic drawing of the network architecture. Input
units are shown on the bottom of the pyramid, with 7 groups of 29
units in each group. Each hidden unit in the intermediate layer
receives inputs from all of the input units on the bottom layer, and
in turn sends its output to all 26 units in the output layer. An
example of an input string of letters is shown below the inputs
groups, and the correct output phoneme for the middle letter is
shown above the output layer. For 80 hidden units, which were
used for the corpus of continuous informal speech, there was a
total of 309 units and 18,629 weights in the network, including a
variable threshold for each unit.

as shown in Fig. 1.
The network used in NETtalk is hierarchically

arranged into three layers of units: an input layer, an
output layer and an intermediate or "hidden" layer, as
illustrated in Fig. 2. Information flows through the
network from bottom to top. First the letters units at
the base are clamped, then the states of the hidden units
are determined by Eqs. 1 & 2, and finally, the states of
the phoneme units at the top are determined (30).

Representations of Letters and Phonemes
There are seven groups of units in the input layer, and
one group of units in each of the other two layers. Each
input group encodes one letter of the input text, so that
strings of seven letters are presented to the input units
at any one time. The desired output of the network
is the correct phoneme, or contrastive speech sound,
associated with the center, or fourth, letter of this seven
letter "window". The other six letters (three on either
side of the center letter) provide a partial context for
this decision. The test is stepped through the window
letter-by-letter. At each step, the network computes a
phoneme, and after each word the weights are adjusted
according to how closely the computed ~ronunciation
matches the correct one.

The letters and phonemes are represented in differ-
ent ways. The letters are represented locally within

t?

Some problems with a feedforward
model of temporal processes

• Computational cost grows with temporal duration
modeled	

• Can’t capture long-time contextual dependencies
in sequences	

• Networks don’t have persistent state— “noise
correlations” might be state!

Hopfield networks have fixed-
point attractor dynamics

• Dynamics are gradient
descent on an energy
function (the lyapunov
function)	

• Autonomous after initial
input	

• Guaranteed to converge to a
stable fixed point due to
symmetric connectivity
matrix

Can we you use gradient descent
to train general RNNs?

Yes, yes we can!

…but there’s a wrinkle.

Backpropagation reviewLearning rule for hidden layer

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

where
back-propagation!
of error

It’s just the chain rule!

Can we apply backpropagation
directly to an RNN?

• Not exactly— the gradient of a RNN’s error function
w.r.t. to the weights depends on the network’s state at
all previous time steps.	

• But we can unravel the network structure in time to
get a feedforward network and perform backprop on
this network.	

• This is called backpropagation through time (BPTT).

Realtime recurrent learning 	

(Williams and Zipser 1989)

• 	

• We can run the recurrence relation underlying the
gradient computation forward in time!	

• Downside: BPTT is O(tn2) per time step but RTRL
is O(n3) per time step— prohibitive for large
networks!

@y(t)

@Wr
= diag(�0(y(t)))W> · @y(t� 1)

@Wr

Intermission	

(aka neural network winter)

Reservoir computing

Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy
in Wireless Communication

Herbert Jaeger* and Harald Haas

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved by
a factor of 2400 over previous techniques. The potential for engineering ap-
plications is illustrated by equalizing a communication channel, where the signal
error rate is improved by two orders of magnitude.

Nonlinear dynamical systems abound in the
sciences and in engineering. If one wishes to
simulate, predict, filter, classify, or control such
a system, one needs an executable system mod-
el. However, it is often infeasible to obtain
analytical models. In such cases, one has to
resort to black-box models, which ignore the
internal physical mechanisms and instead re-
produce only the outwardly observable input-
output behavior of the target system.

If the target system is linear, efficient
methods for black-box modeling are avail-
able. Most technical systems, however, be-
come nonlinear if operated at higher opera-
tional points (that is, closer to saturation).
Although this might lead to cheaper and more
energy-efficient designs, it is not done be-
cause the resulting nonlinearities cannot be
harnessed. Many biomechanical systems use
their full dynamic range (up to saturation)
and thereby become lightweight, energy effi-
cient, and thoroughly nonlinear.

Here, we present an approach to learn-
ing black-box models of nonlinear systems,
echo state networks (ESNs). An ESN is an
artificial recurrent neural network (RNN).
RNNs are characterized by feedback (“re-
current”) loops in their synaptic connection
pathways. They can maintain an ongoing
activation even in the absence of input and
thus exhibit dynamic memory. Biological
neural networks are typically recurrent.
Like biological neural networks, an artifi-
cial RNN can learn to mimic a target
system—in principle, with arbitrary accu-
racy (1). Several learning algorithms are
known (2!4) that incrementally adapt the
synaptic weights of an RNN in order to
tune it toward the target system. These
algorithms have not been widely employed
in technical applications because of slow

convergence and suboptimal solutions (5,
6). The ESN approach differs from these
methods in that a large RNN is used (on the
order of 50 to 1000 neurons; previous tech-
niques typically use 5 to 30 neurons) and in
that only the synaptic connections from the
RNN to the output readout neurons are
modified by learning; previous techniques
tune all synaptic connections (Fig. 1). Be-
cause there are no cyclic dependencies be-
tween the trained readout connections,
training an ESN becomes a simple linear
regression task.

We illustrate the ESN approach on a
task of chaotic time series prediction (Fig.
2) (7). The Mackey-Glass system (MGS)
(8) is a standard benchmark system for time
series prediction studies. It generates a sub-
tly irregular time series (Fig. 2A). The
prediction task has two steps: (i) using an
initial teacher sequence generated by the
original MGS to learn a black-box model M
of the generating system, and (ii) using M
to predict the value of the sequence some
steps ahead.

First, we created a random RNN with
1000 neurons (called the “reservoir”) and one
output neuron. The output neuron was
equipped with random connections that
project back into the reservoir (Fig. 2B). A
3000-step teacher sequence d(1), . . .,
d(3000) was generated from the MGS equa-
tion and fed into the output neuron. This
excited the internal neurons through the out-
put feedback connections. After an initial
transient period, they started to exhibit sys-
tematic individual variations of the teacher
sequence (Fig. 2B).

The fact that the internal neurons display
systematic variants of the exciting external
signal is constitutional for ESNs: The internal
neurons must work as “echo functions” for
the driving signal. Not every randomly gen-
erated RNN has this property, but it can
effectively be built into a reservoir (support-
ing online text).

It is important that the echo signals be
richly varied. This was ensured by a sparse
interconnectivity of 1% within the reservoir.
This condition lets the reservoir decompose
into many loosely coupled subsystems, estab-
lishing a richly structured reservoir of excit-
able dynamics.

After time n " 3000, output connection
weights wi (i " 1, . . . , 1000) were computed
(dashed arrows in Fig. 2B) from the last 2000
steps n " 1001, . . . , 3000 of the training run
such that the training error

MSEtrain"1/2000!n"1001

3000 "d(n)!!i ! 1

1000

w i xi(n)#2

was minimized [xi(n), activation of the ith
internal neuron at time n]. This is a simple
linear regression.

With the new wi in place, the ESN was
disconnected from the teacher after step 3000
and left running freely. A bidirectional dy-
namical interplay of the network-generated
output signal with the internal signals xi(n)
unfolded. The output signal y(n) was created
from the internal neuron activation signals
xi(n) through the trained connections wi, by

y(n)"#
i"1

1000wixi$n). Conversely, the internal

signals were echoed from that output signal
through the fixed output feedback connec-
tions (supporting online text).

For testing, an 84-step continuation
d(3001), . . . , d(3084) of the original signal
was computed for reference. The network
output y(3084) was compared with the cor-
rect continuation d(3084). Averaged over 100
independent trials, a normalized root mean
square error

NRMSE " "!j"1

100

(dj(3084) ! yj$3084))2/100%2/2

'10!4.2

was obtained (dj and yj teacher and network

International University Bremen, Bremen D-28759,
Germany.

*To whom correspondence should be addressed. E-
mail: h.jaeger@iu-bremen.de

Fig. 1. (A) Schema of previous approaches to
RNN learning. (B) Schema of ESN approach.
Solid bold arrows, fixed synaptic connections;
dotted arrows, adjustable connections. Both
approaches aim at minimizing the error d(n) –
y(n), where y(n) is the network output and d(n)
is the teacher time series observed from the
target system.

R E P O R T S

2 APRIL 2004 VOL 304 SCIENCE www.sciencemag.org78

 o
n

M
ar

ch
 8

, 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

Echo State Networks	

(Jaeger & Haas 2004) 2540 Wolfgang Maass, Thomas Natschläger, and Henry Markram

0

20

40

input�pattern�"one"

0

45

90

135

liquid�response

0

25

50

readout�response

0

1

correctness

0 0.1 0.2 0.3 0.4 0.5

0

1

certainty

time�[s]

0

45

90

135

liquid�response

n
e

u
r
o
n

�
#

0

25

50

readout�response

n
e

u
r
o
n
�
#

0

1

correctness

0 0.1 0.2 0.3 0.4 0.5

0

1

certainty

time�[s]

0

20

40

input�pattern�"zero"

n
e
u

r
o

n
�
#

6 Exploring the Computational Power of Models for Neural
Microcircuit

As a érst test of its computational power, this simple generic circuit was ap-
plied to a previously considered classiécation task (Hopéeld & Brody, 2001),
where spoken words were represented by noise-corrupted spatiotemporal
spike patterns over a rather long time interval (40-channel spike patterns
over 0.5 sec). This classiécation task had been solved in Hopéeld and Brody
(2001) by a network of neurons designed for this task (relying on unknown

Liquid State Machines	

(Maass et al. 2002)

Ideas from Echo State Networks

• Use an unoptimized random sparsely connected
recurrent reservoir and do a linear readout. 	

• Only optimize the readout weights.	

• Use teacher forcing to achieve appropriately
tuned the reservoir dynamics

BPTT returns (with a vengeance)

Where to next?
• Address vanishing/exploding sensitivity problem with network

units designed for specific temporal dynamics (e.g. Long
Short Term Memory)	

• Move beyond gradient descent based approaches to
optimizing network parameters	

• Incorporate addition biophysical features of real networks
(e.g. STDP, metabotropic receptor dynamics, gap junctions,
dendritic non-linearities)

