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Predictive coding: a fresh view of inhibition in the retina
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Interneurons exhibiting ‘centre—surround antagonism within their recep-
tive fields are commonly found in peripheral visual pathways. We
propose that this organization enables the visual system to encode spatial
detail in a manner that minimizes the deleterious effects of intrinsic noise,
by exploiting the spatial correlation that exists within natural scenes.

The antagonistic surround takes a weighted mean of the signals in
neighbouring receptors to generate a statistical prediction of the signal
at the centre. The predicted value is subtracted from the actual centre
signal, thus minimizing the range of outputs transmitted by the centre.
In this way the entire dynamic range of the interneuron can be devoted
to encoding a small range of intensities, thus rendering fine detail
detectable against intrinsic noise injected at later stages in processing.
This predictive encoding scheme also reduces spatial redundancy, thereby
enabling the array of interneurons to transmit a larger number of
distinguishable images, taking into account the expected structure of the
visual world.

The profile of the required inhibitory field is derived from statistical
estimation theory. This profile depends strongly upon the signal:noise
ratio and weakly upon the extent of lateral spatial correlation. The
receptive fields that are quantitatively predicted by the theory resemble
those of X-type retinal ganglion cells and show that the inhibitory
surround should become weaker and more diffuse at low intensities. The
latter property is unequivocally demonstrated in the first-order
interneurons of the fly’s compound eye. The theory is extended to the
time domain to account for the phasic responses of fly interneurons.

These comparisons suggest that, in the early stages of processing, the
visual system is concerned primarily with coding the visual image to
protect against subsequent intrinsic noise, rather than with reconstructing
the scene or extracting specific features from it. The treatment emphasizes
that a neuron’s dynamic range should be matched to both its receptive
field and the statistical properties of the visual pattern expected within
this field. Finally, the analysis is synthetic because it is an extension of
the background suppression hypothesis (Barlow & Levick 1976), satisfies
the redundancy reduction hypothesis (Barlow 1961 a, b) and is equivalent
to deblurring under certain conditions (Ratliff 1965).

1 Present address: Abteilung Neurobiologie, Zoologisches Institut der Universitit Ziirich,
Winterthurerstrasse 190, CH-8057 Ziirich, Switzerland.
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INTRODUCTION

Lateral and temporal inhibition are frequently encountered in the preliminary
stages of sensory processes, and are commonly observed in visual systems. For
example, the bipolar and ganglion cells of vertebrate retinas often generate
transient responses and have receptive fields with antagonistic centre and surround
organization. Similar patternsofantagonism are found in thefirst orderinterneurons
of Limulus and insect compound eyes (Barlow et al. 1957; Werblin 1971 ; Hartline
& Ratliff 1972 ; Laughlin 19814).

Several functions have been assigned to the inhibition observed in retinal
neurons. The most general proposition is that inhibition removes redundancy from
the input so as to allow retinal neurons to encode the incoming information
efficiently (Barlow 19614, b, ¢). By relating the intensity falling on the centre of
the receptive field to surrounding levels of illumination, lateral inhibition reduces
the range of intensity that neurons need encode without necessarily rejecting
information (Barlow 1961 ). This role of reducing the response range of the centre
has also been interpreted as a zero offset, cancelling out the steady (d.c.) bias
of the signal so as to keep a neuron’s response range centred upon the local
mean intensity. Thus lateral inhibition is one of the mechanisms that allow retinal
neurons to operate over a wide range of intensities with an appropriate sensitivity
(Barlow & Levick 1976; Laughlin & Hardie 1978). Alternatively, lateral inhibition
has been interpreted as a filter for enhancing edges (Ratliff 1965), either to deblur
the retinal image (see, for example, Marcelja 1979) or to encode a wide range of
spatial detail in a form that might be appropriate for analysis in higher centres
(Marr & Hildreth 1980). There are difficulties associated with using these hypotheses
to establish with certainty the roles that known patterns of inhibition play in
retinal processing. As we discuss later, the quantitative predictions of the
deblurring hypothesis do not accord with much of the data, the d.c. offset and
redundancy reduction hypotheses are qualitative, while the edge enhancement
hypothesis depends upon a priori assumptions about the relative values of certain
signal components to processing at higher levels.

To further our understanding of retinal inhibition’s repertoire, and to help define
the function of inhibition in known networks, we have developed a new analytical
approach, predictive coding. This simple procedure, initially developed for trans-
mission of video data (Oliver 1952; Harrison 1952), reduces the signal amplitude
by removing predictable, and hence redundant, components. The reduction in
input enables afferent neurons to operate with a higher sensitivity so that the
information contained within small signals is less likely to be lost amid the intrinsic
noise injected at higher levels. Predictive coding is a unifying concept, giving a
clearer perspective of inhibition’s full repertoire, because it is a limiting case of both
the d.c. offset and deblurring hypotheses, and it also removes redundancy. As one
might expect of the simple patterns of inhibition seen in the retina, redundancy
is not completely eliminated.

The predictive coding hypothesis has the advantages of being quantative and
justifiable without recourse to an evaluation of the importance that subsequent
processing gives to various components of the incoming signal. Coding is directed
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towards using neurons efficiently to encode all the information in the incoming
stream of data. Thus the theory can be tested without recourse to a prior:
arguments. Our experiments show that the second order neurons of the fly’s
compound eye have the patterns of intensity-dependent spatial and temporal
inhibition required for predictive coding. As vertebrate retinal neurons show
similar properties (Laughlin 1981a), we suggest that the simple procedure of
predictive coding as used in the fly’s eye is of wider relevance. Thus, our findings
add weight to earlier suggestions that the ‘neat packaging’ (Barlow 1961b) of
information is of fundamental importance to early visual processing.
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Ficure 1. Intensity-response function of a typical visual interneuron, schematically shown here
to illustrate the effect of intrinsic noise on intensity discrimination. If the response range
of this spiking interneuron is restricted to, say 0-200 Hz, and if the amplitude of intrinsic
noise corresponds to a fluctuation in spike frequency of, say, 10 Hz, then the neuron can
encode 20010 = 20 distinguishable intensity levels.

THEORY

The starting point of this coding theory is that intrinsic noise, generated within
the nervous system central to the action of inhibition, places a limit upon each
neuron’s ability to encode incoming signals. As pointed out by Barlow & Levick
(1976) a neuron can only produce a limited number of discriminable response levels
because biophysical factors such as reversal potentials and maximum spike rates
restrict the available response range, and noise limits the number of response levels
that can be distinguished within thisrange. Even if the incoming signal is noise-free,
the intrinsic noise divides the response range into a finite number of response levels,
as illustrated in figure 1. We propose that lateral inhibition minimizes the range
of inputs presented to a neuron, by exploiting the correlation that exists between
neighbouring points in a visual scene. It uses the intensity values in the
surrounding regions to generate a statistical estimate of the intensity expected at
a particular point. By subtracting this best estimate from the signal actually
entering at this point, the amplitude of the transmitted signal is minimized. This
reduction allows small fluctuations to be monitored with the high sensitivity
necessary for them to be resolved against intrinsic noise, yet allows the neurons
to operate over a wider range of receptor input levels. This design consideration



430 M. V. Srinivasan, S. B. Laughlin and A. Dubs

is of some importance because visual systems generally have to operate over a wide
range of intensities.

The theory is developed within the context of an array of visual interneurons,
each of which has an excitatory centre and an inhibitory surround (figure 2). It
is first established that spatial correlation exists within the scenes presented to this
array. Based upon this correlation, the signal at the centre of the receptive field
is estimated from the surround, according to statistical principles. The estimate
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Ficure 2. Schematic diagram of receptive-field organization, illustrating the hypothesized
encoding scheme. The signal produced by the central receptor (shown by heavy lines) is
compared with a statistical prediction of this signal based on a weighted linear sum of
signals from receptors in the vicinity. The interneuron encodes the difference, D, betwen the
actual and the predicted signals, and transmits it to the higher centres.

is derived by summing together weighted contributions from neighbouring points.
This weighting function defines the inhibitory surround required to minimize the
error between the estimated value of the signal and its actual value, so minimizing
the range of signals each interneuron need code. The shape of the weighting
function depends strongly upon the signal:noise ratio of the input, and hence
intensity, but is only weakly influenced by the degree of spatial correlation in the
scene. It is demonstrated that this coding strategy, which minimizes dynamic
range, also removes spatial redundancy from the output of the interneuron array,
so satisfying the redundancy reduction hypothesis (Attneave 19s54; Barlow
1961 a—c). Finally, the concept of predictive coding is extended to the time domain.
Here we exploit the fact that the signal evoked in a receptor by a moving visual
scene is temporally correlated because (a) the scene is spatially correlated and (b)
the photoreceptor’s impulse-response function has a finite duration. Thus, one can
derive the pattern of self-inhibition that predicts the present value of the receptor
signal based on its past values. In this case, predictive coding removes temporal
redundancy from the interneuron’s output.

Scenes contain spatial correlation

In a purely random visual scene, the variation of intensity from one point to
the next would be unpredictable. However, real visual scenes are usually composed
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Fiaure 3. The autocorrelation function of visual scenes. (@) The scene, a bed of reeds. (b) Spatial
intensity profile of scene, measured along a line joining the centres of the marker discs.
Intensity is plotted on a linear scale with the maximum value normalized to unity. (c)
Squares: autocorrelation function of intensity profile shownin (b). Triangles: autocorrelation
function of an intensity profile obtained from a horizontal scan about two disc diameters
below that of (b). The autocorrelation function R(x) is computed according to

L-z L
R = [ H@ 1E+mag [ [ e,
=X Jo 0
where () is the function describing the spatial intensity profile, and L is the total length
of this profile (degrees). Both x and £ are measured in degrees. The denominator normalizes
the autocorrelation function to unity, i.e. R(0) = 1. The dotted lines indicate, for each
intensity profile, the ratio between the the square of the mean value and the mean square
value. As x =00 the autocorrelation function should, in theory, asymptotically approach
this ratio, provided that the statistical properties of the intensity fluctuations remain
constant within the scene. This condition was approximately fulfilled by most of the scenes
that were analysed.
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of finite areas within each of which the reflectance does not change dramatically.
As a result, most visual scenes are not entirely random and intensities are spatially
correlated over short distances (Kretzmer 1952). Even a completely random scene
(with zero spatial correlation) would give rise to a spatially correlated retinal
image, because the optical limitations found in any eye (e.g. diffraction and other
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FiGURE 4. Spafial autocorrelation function of intensity profile obtained by scanning arother
visual scene, a bush at a distance of approximately 5 m {photograph not shown). (Dotted
line as in figure 3.)

aberrations) produce on the receptor array a smoothed, blurred version of the
original scene. Thus, all retinal images contain spatial correlation. The correlation
distance will vary from scene to scene, depending upon the sizes, textures and
distances of objects in the scene, and with the quality of the optics. As we will
demonstrate that the receptive fields required for predictive coding are rather
insensitive to the precise extent of spatial correlation, we present here only two
examples to illustrate the range of correlation distances that we have found in
natural scenes.

Figures 3 and 4 show spatial autocorrelation functions measured for two
different scenes. Figure 3a shows a photograph of one of the scenes, a patch of tall
reeds. This scene was chosen for illustration because, when scanned horizontally,
it is the most random that we have measured so far (i.e. it has the smallest
correlation distance). Figure 3b shows a spatial intensity profile measured by
scanning the scene with a photodetector with a visual field of approximately 0.1°
(Laughlin 1981b), along a horizontal line joining the centres of the marker discs.
Figure 3¢ (squares) depicts the spatial autocorrelation function computed for this
profile, as described in the figure legend. It illustrates that intensities are correlated
over an angular distance of about 2°. The triangles in this figure depict the
autocorrelation function obtained from a horizontal scan two disc diameters below
that of figure 3b. The spatial correlation now extends to about 4°, presumably
because this scan includes more of the grass blades in the foreground, which
subtend larger visual angles at the detector. Figure 4 shows the spatial autocor-
relation function of a large bush at a distance of 5 m (photograph not shown). It
indicates a spatial correlation distance of about 3° for this scene. Scenes depicting
human figures are also spatially correlated over substantial angular distances (see,
for example, Kretzmer 1952; Rosenfeld & Kak 1976; Gonzalez & Wintz 1977).
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Predicting the intensity at a point

Given that intensities are spatially correlated, it is possible to predict the signal
expected at a particular receptor, from the signals in the receptors surrounding
it. The theory of signal processing offers a well established statistical procedure
for making such predictions. Itis called ‘linear mean-squared estimation’ (Papoulis

1965). If a spatial signal is sampled at m different locations 1, 2, ..., m, yielding
S = 0.3
N=20
M =1
D 5
B =0133 JS/N =

Falal-s[2[ 180 1 [2]3]4] 5]

receptor array

Fieure 5. Weighting coefficients, calculated from theory, specifying the receptive field of an
encoding interneuron that receives input from an array of 11 receptors. The interneuron
receives an excitatory input from the central receptor (0), and compares it with a statistical
estimate of this signal derived from a suitably weighted linear combination of signals from
the ten other receptors. The strengths of the inhibitory coefficients are plotted relative to
that of the excitatory coefficient from the central receptor, which is normalized to unity.
(The receptive-field profile of the interneuron can be derived from this array of weighting
coefficients by taking into account the finite acceptance angle of each receptor.) In this and
the following figures M denotes the mean intensity of the visual scene (always normalized
to 1), S denotes the standard deviation of the fluctuations of intensity about the mean (i.e.
the average contrast of the scene), N denotes the standard deviation of the receptor noise
(expressed in terms of equivalent contrast) and D denotes the space constant of the spatial
autocorrelation function of the visual scene (expressed in receptor widths). In this example
the receptor signal:noise ratio (S/N) is infinity. The figure also shows the standard
deviation, K, in intensity units, of the expected error between the predicted and actual
values of receptor signal, calculated according to equation (1¢). Details of the calculations
for this and other figures are described in Appendix 1.

samples x,, x,,. .., &, respectively, then the statistically best linear prediction,
&, of the signal at a location 0 is given by a weighted linear combination of the
m samples:

m
‘ZA'O = Z hixis (la)

i=1
where the h; are solutions of the system of linear simultaneous equations
"Ry R et Ry Ry = Ry
Ry by + Ry s hot ...+ Ry by = By (1b)

Rm,1h1+Rm,2h2+ e +Rm,mhm = Ro,m
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and the R; ; are the spatial autocorrelation coefficients between samples taken at
locations ¢ and j. That is, R; ; = 2; x;. The prediction &, so obtained is ‘best’ in the
sense that it minimizes the mean square error between the predicted value and
the true value of the signal at location 0. The expected standard deviation (E) of

this error is given by m
B= J(Roo=E hiRyy) (1)

i=1
Figure 5 shows the result of using this theory to derive the receptive-field profile
of an interneuron that receives input from a one-dimensional array of receptors,
spaced one unit of distance apart. In this calculation we have assumed that the
retina views a scene in which the distribution of intensities has a mean value of
one unit of intensity, a standard deviation about the mean of 0.3 intensity units
(i.e. an average contrast of 30 9% ) and a spatial autocorrelation that is exponential
with a space constant of five distance units (i.e. five receptor widths). The result
indicates that the best estimate of the receptor signal is obtained primarily from
the signals of nearest-neighbour receptors. The interneuron encodes the difference
between the actual value of the receptor signal (as indicated by the excitatory
centre) and its predicted value (as indicated by the inhibitory surround). This
difference, or error, has a standard deviation (£) of 0.133 intensity units in this
example. The dynamic range of the interneuron need only be large enough to
encode this difference.
Note that the analysis does not require any assumptions regarding how intensity
fluctuations in the scene are distributed about the mean level.

Intensity dependence of inhibitory fields

At low light levels, noise caused by the random absorption of photons becomes
significant in comparison to the signal. The signal from a given receptor can no
longer be predicted reliably from its immediate neighbours, because the receptor
signals are contaminated by photon noise. Therefore one expects that the
receptive-field surround appropriate for prediction at low light levels (i.e. at poor
receptor signal : noise ratios) would differ from that appropriate to high light levels
(i.e. at high receptor signal:noise ratios). In quantitative terms, the effect of
increased photoreceptor noise is to decrease the non-diagonal (E; ;) terms of the R
matrix, relative to the diagonal (R; ;) terms. This leads to receptive-field profiles
in which the inhibitory flanks are weaker and more diffuse.

Figure 6 shows interneuron receptive-field profiles calculated for receptor
signal :noise ratios of 10, 1 and 0.1. As the signal : noise ratio worsens, the inhibitory
surround becomes weaker and more diffuse. Evidently, as the receptor signal : noise
ratio decreases it becomes increasingly profitable to extract the best prediction
from a larger group of surrounding receptors, rather than from just the nearest
neighbours. This pooling tends to average out the deleterious effects of photon shot
noise from the predicted value because the noise is statistically independent among
different receptors. At very low intensities, when the incoming noise in the receptor
is large in comparison to the signal, the most reliable prediction corresponds to
the mean intensity, which the inhibitory field computes by averaging across the
entire receptor array (figure 6¢). For each value of receptor signal : noise ratio, the
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calculated receptive field is that which achieves a minimum error between the
predicted and the actual receptor signal. The standard deviation (£) of this error
is shown alongside each receptive-field profile. This ‘error’ is, of course, the signal
to be transmitted after predictive coding and, when the signal :noise ratio is high,
the transmitted signal is half the amplitude of the incoming signal (measured in

(@) S = 0.03
N = 0.003
M =1
D=5

E = 0.014 S/N = 10

Eol-al-slelfogi]2]s]a]s]

(b) S = 0.03
N = 0.03
M=1
D =35

E = 0.036 S/N =1

(©) S = 0.03
N =03
M=1
D=5

E=0315. QS/N=o01

FIGURE 6. As in figure 5, except that the calculations are made for receptor signal:noise ratios
of (a) 10, (b) 1 and (c) 0.1.

units of intensity). Thus the interneuron can operate with twice the sensitivity,
without additional risk of saturation, as a result of removing some redundant
components from the signal by this simple predictive coding procedure.

At lower light levels, the poorer receptor signal : noise ratio causes the error, and
hence the required dynamic range, to be larger than the average contrast of the
scene (figure 6b). Nevertheless, this error is still the smallest that can be achieved
at this particular signal:noise ratio; it is smaller than the error that would result
from using as a prediction the mean value calculated over the entire receptor array.
In the example of figure 6b, the standard deviation of the error that results from
using an inhibitory field that is tailored for optimum prediction is £ = 0.036, while
the standard deviation of the error that would result from using the global mean
as a prediction would be the sum of signal and noise, S+ N, which is 0.06. In short,
the required dynamic range is a function of signal:noise ratio, and hence light
intensity.
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To summarize the results of figure 6, at high luminances the inhibitory surround
forms a tight annulus around the excitatory centre. As the luminance is lowered,
the inhibitory surround becomes weaker and more diffuse. Ultimately, at very low
luminances, one would expect the surround to be so weak and diffuse as to be
experimentally undetectable, except perhaps with a stimulus consisting of a broad
annulus of light.
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FicUre 7. As in figure 5, except that the calculations are made for spatial autocorrelation
functions with space constants of (a) two and (b) ten units.

Dependence of inhibitory fields on spatial correlation

Figure 7a, bshowsreceptive fields calculated for spatial autocorrelation functions
with space constants of two and ten units, for comparison with the space constant
of five units used for figure 5. These figures demonstrate that the profile required
of the inkibitory surround is relatively insensitive to the extent of spatial correlation.
This insensitivity is a desirable feature, because the space constants in real
environments vary with the sizes and distances of objects in the environment
(figures 3, 4). Photon noise, which can completely randomize the most correlated
of inputs, has the more powerful effect upon the inhibitory interactions required
for predictive coding. Thus it is most profitable, at least in the first instance, to
test for predictive coding by comparing receptive fields at different mean light
levels, rather than search for animals that inhabit scenes with radically different
spatial characteristics.

Receptive fields in two dimensions

Figure 8 shows receptive fields calculated using the same principles as above,
but for a two-dimensional (7 x 7) receptor array. These receptive fields have the
same properties as the one-dimensional fields, with the exception that inhibitory



Predictive coding in vision 437

inputs from remote receptors are weighted comparatively less, partly because in
a two-dimensional array of receptors the number of receptors at a given distance
from a receptor increases with distance.

Redundancy reduction

An important property of the encoding scheme that we have developed is that
it not only increases the accuracy with which retinal images are transmitted to
the brain, but also reduces redundancy in the transmitted image by removing all
first-order correlations (i.e. correlations described by the autocorrelation function).

(a) (b) § =03
N =0
M=1
—_—— w1 | T 1--—--- D=3
S/N =

Ficure 8. As in figure 5, except that the weighting coefficients are now calculated for a
two-dimensional (7 x 7) receptor array as shown in (@). The encoding interneuron compares
the signal from the central receptor (0) with a statistical estimate of this signal derived from
the 48 surrounding receptors. The results are shown for receptor signal : noise ratios of (b)
0, (¢) 1 and (d) 0.3, and they depict the weighting coefficients corresponding to the receptors
lying along the dashed line of (a).

The proof of this statement is by contradiction. If there were any residual
first-order correlation in the information transmitted by the array of interneurons,
then the signals from at least one pair of interneurons, say i, and 4,, must be
statistically correlated. If this is so, then it should be possible to improve the
prediction of the signal of receptor r,, (i.e. reduce the error) by subtracting from
the output of i, a fraction of the output of i,. However, this would mean that the
revised prediction of the signal of 7, is even better than the original prediction,
which is itself the best possible linear prediction: a contradiction. Hence, the
outputs of the array of interneurons cannot contain any first-order correlations.
Thus, in formulating the receptive field that provides for a maximum resistance
to contamination by intrinsic noise, we have derived a form of lateral inhibition
that satisfies Barlow’s (1961 a, b) redundancy reduction hypothesis. To our know-
ledge this is the first time that a receptive field satisfying this important theory has
been developed.

In other words, the lateral inhibition subtracts a statistically predictable ‘
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component of the retinal image, and the interneurons transmit only the unpre-
dictable component of the retinal image to the brain. Packing the interneurons’
dynamic ranges with the unpredictable component enables the visual system to
achieve maximum information capacity, i.e. to transmit the maximum possible
number of distinguishable pictures to the brain.

Note that the simple predictive coding scheme described here only attempts to
remove the redundancy expected in the average scene. It makes no attempt to
eliminate the redundancy associated with particular objects, e.g. straight edges and
periodic structures. The removal of these specific components probably requires
a process that matches its predictive procedures to particular components of the
incoming signal, such as oriented edges. There is no evidence at present for such
complex procedures being executed at the first or second stages of neuronal
processing. Adaptive processing may be more suited to higher levels of the visual
system (see, for example, Mackay 1956).

Encoding visual signals in the time domain

Predictive encoding can be extended to the time domain, and a functional role
sought for temporal inhibition. Visual interneurons with temporal inhibition (or
self-inhibition, as it is also called (Purple & Dodge 1965) have responses that tend
to be phasic or transient in nature. They respond primarily to changes of light
intensity, and in many cases a constant-intensity light evokes virtually no
sustained response. The impulse response of such a unit (i.e. the response to a brief
flash) is biphasic, consisting of an initial excitatory phase followed by an inhibitory
phase (see, for example, figure 11). The delayed temporal inhibition suppresses the
sustained response that would otherwise be evoked by a steady light. Here we
formulate the hypothesis that temporal inhibition mediates prediction in the time
domain, just as lateral inhibition mediates prediction in the spatial domain.

“onsider the problem of encoding the fluctuating signal that is produced by a
receptor when the visual scene (or an object within it) moves across the receptor’s
visual field. The receptor signal will always be correlated over a finite duration;
it will never be entirely random. This is so even in the extreme case of a rapidly
moving, spatially random visual scene, because the receptor has a finite integration
time which smoothes out the intensity fluctuations of the visual scene (Srinivasan
& Bernard 1975).

By using a reasoning analogous to that of Snyder (1979), it can be shown that
the correlation duration 7 of the receptor signal evoked by a spatially random scene
moving at an angular velocity W (deg s™!) is given by

7 = (Bp/W)* + (AL)?, (2)

where Ap is the acceptance angle of the receptor (deg) defined as the half-width
of the angular sensitivity function, and At is its integration time (s), defined as the
temporal half-width of the impulse response function (Howard 1981). Thus, for
slow motion (W — 0) the correlation duration would be comparatively large, and
would be determined primarily by velocity and the acceptance angle of the
receptor; for rapid motion (W —o0) the correlation duration would be small and
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determined primarily by the receptor’s integration time (Srinivasan & Bernard
1975).

Given that the receptor signal is temporally correlated, it should be possible to
make a statistical prediction of its present value, based upon its past history. The
interneuron would encode the difference between the actual present value of the

(a) S = 0.03
N = 0.003

M =1

D=2

S/N = 10
() S = 0.03
N = 0.03

M =1

D=2

S/N =1

S = 0.03
(c)
N =03
M =1
D=2
S/N = 0.1
0 10 20

Ficure 9. Predictive coding in the time domain. The figure shows temporal weighting functions
calculated for receptor signal:noise ratios of (a) 10, (b) 1 and (c) 0.1. Time is depicted in
units of receptor integration time, and the parameter D now refers to the time constant
of the temporal autocorrelation function of the receptor signal, specified in these units. All
other parameters have the same meaning as in earlier figures.

receptor signal and a statistical prediction of this value based on a weighted linear
sum of past values. In this scheme, then, the role of self-inhibition would be to
generate an appropriately weighted sum of the past values, and to subtract the
resulting prediction from the excitatory signal corresponding to the present value.

While the predictive temporal encoding that we are about to describe is
analogous to predictive spatial encoding, there are two noteworthy differences.
First, spatial prediction can be an omnidirectional process (i.e. it can be based on
signals from all of the surrounding receptors), while temporal prediction is
necessarily unidirectional (it is based only on past values of the receptor signal,



440 M. V. Srinivasan, S. B. Laughlin and A. Dubs

not on future values). Secondly, spatial prediction is based on samples of the signal
that are taken at discrete locations (corresponding to individual receptors) while
temporal prediction is based on a continuous signal. Neither distinction is
problematic in our context, and in our calculations we have, for convenience,
treated the receptor signal as being ‘sampled’ in discrete time bins, each having
a duration equal to the receptor’s integracion time. This treatment renders the
temporal prediction problem analogous to the spatial prediction problem, and one
can then work out, using the theory outlined above, how the past values of the
receptor signal in the various bins should be weighted in order to obtain the best
prediction of the present value. (Making the duration of each temporal bin equal
to the receptor integration time renders the noises in the various bins statistically
independent, as in the spatial case.)

Figure 9 shows temporal weighting functions calculated for various values of
receptor signal:noise ratio. These functions give the ‘impulse response’ of the
interneuron, which is the temporal equivalent of the receptive field. The impulse
responses (figure 9) have been calculated by assuming that the receptor signal is
correlated over two receptor ‘integration times’. As with spatial coding, the results
arerelatively insensitive to the extent of correlation, but show a strong dependency
on the signal:noise ratio. At high receptor signal:noise ratios the prediction is
based upon recent values of response (figure 9a) but in the presence of substantial
noise the prediction is based upon a mean value determined over a considerable
interval (figure 9¢). This prolongation of inhibition at low signal:noise ratios is
analogous to the extension of the inhibitory surround of the receptive field.

As in spatial encoding, it can be proved that predictive temporal encoding
suppresses the predictable component of the receptor signal and transmits only
the unpredictable component. Thus, there would be no first-order correlation
(between bins) in the temporal signal transmitted by the encoding interneuron,
and this type of encoding would help the interneuron transmit to the brain the
maximum possible number of distinguishable temporal patterns per second.

COMPARISON OF THEORY WITH EXPERIMENTAL DATA

If the predictive spatial encoding that we have described is in fact used by visual
systems, the most likely application would be in high-acuity form vision. Thus,
one might look for such a strategy in the receptive fields of bipolar cells or X-type
ganglion cells of a vertebrate fovea or area centralis. To test the theory, one has
to measure receptive fields at several different luminances, and compare these with
receptive fields predicted on the basis of the signal : noise ratios at these luminances.
Although there is insufficient information in the literature, the available data fit
the predictions of our theory. At high light levels (when the receptor signal:noise
ratio is high) the inhibitory surrounds of X-type ganglion cells form a tight annulus
around the excitatory centre. At low light levels (when the receptor signal:noise
ratio is low) the surrounds become weak and diffuse, and eventually undetectable.
The experimental evidence for this comes from mapping ganglion-cell receptive
fields by using flashing spots of light (Kuffler 1953; Rodieck & Stone 1965) or
moving bars of light, by making area-threshold measurements (Barlow et al. 1957,
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figs 1, 4; Barlow & Levick 1976, fig. 4) or by measuring the spatial contrast-
sensitivity functions by using sinusoidal gratings (Enroth-Cugell & Robson 1966,
fig. 15). All of these data support the hypothesis that X-type retinal ganglion cells
have receptive fields that are designed for optimum spatial encoding of slowly
moving objects. Similarly, human psychophysics suggests that lateral and temporal
antagonism, manifest by the depression of contrast sensitivity at low frequencies,
weakens at low intensities (Campbell & Robson 1968; Kelly 1961).

As predictive coding uses the receptive field surround to predict the signal
expected at the centre, it formulates neither the centre diameter nor the distance
between the centres of adjacent neurons. Our analysis assumes that these critical
sampling parameters are determined by factors such as the requirements for
regions 6f high spatial acuity and the neced for area summation to enhance
sensitivity at low intensities. Thus, if one adopts a more general point of view and
considers figures 5-8 as representing arrays of excitatory centres, rather than
arrays of photoreceptors, then our analysis predicts that, at a given signal:noise
ratio, visual systems with larger excitatory centres (i.e. coarser sampling mosaics)
should have proportionately larger inhibitory surrounds. This geometrical scaling
would also apply to a system in which interneurons with centres of different sizes
coexist in the same retinal region (see, for example, Wilson & Bergen 1979),
provided that the respective surrounds are generated from mosaics of correspond-
ingly different coarseness. For many retinal neurons, however, the surround may
not be generated from sampling units that have the same diameter as the centre.
It is possible to formulate predictive surrounds for given centres without the
arbitrary constraint of an unduly coarse sampling mosaic, but the lack of pertinent
quantitative data from vertebrate retinal neurons renders the added complications
to our analysis superfluous at the present time.

Preliminary calculations with arbitrarily fine sampling mosaics indicate that,
at high light levels (i.e. infinite signal: noise ratio), the surround should be created
only from sampling units in the immediate vicinity of the excitatory centre,
regardless of how large (or small) these units are in comparison with the centre.
However, at lower light levels (i.e. moderate signal:noise ratios) the number of
units that need to be pooled to create the surround increases with the fineness of
the array. The reason is that the finer the array the lower the signal:noise ratio
per unit, which in turn requires that more units be pooled to construct the surround
(see figure 8). The surround can thus comprise a small number of relatively coarse
units or a larger number of fine units. The expectation, therefore, is that at
moderate and low light levels the angular extent of the inhibitory surround would
not vary dramatically with the fineness of the sampling mosaic.

We can test rigorously for predictive coding in the compound eye of the fly,
Lucilia cuprina. The receptive fields of a major class of first-order afferent
interneurons, the large monopolar cells (l.m.cs), have an antagonistic centre—
surround arrangement. The centre corresponds to the finest spatial unit of the
photoreceptor mosiac so that the organization of this eye is identical to the
disposition of photoreceptors in our model (Kirschfeld 1967; Braitenberg 1967;
Zettler & Jirvilehto 1972; Mimura 1976). Furthermore, by using established
intracellular techniques (Hardie 1979; Laughlin & Hardie 1978), it is possible to
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measure the parameters relevant to predictive coding, namely the signal:noise
ratios and the shapes of receptive fields at different intensities.

Measurements of signal : noise ratio were made at two mean luminances, 10.0 and
1.26 cd m™2, by using as the signal a sinusoidal grating of contrast 0.4 and spatial
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Fraure 10. Comparison of experimentally measured receptive fields of large monopolar cells
(I.m.cs) in the fly’s visual system (solid curves) with fields theoretically expected on the basis
of predictive spatial encoding (dotted curves). The L.m.c. receptive fields and signal:noise
ratios (S/N) were measured at luminances of (@) 10.0 and (b) 1.26 cd m™2. In each case, the
theoretical receptive field was calculated by assuming a 7 x 7 receptor array, arranged as
in figure 8a, with an interreceptor spaecing of 1.25° in either direction (W. Ribi &
D. R. Dvorak, unpublished measurements of Lucilia interommatidial angles). The resulting
array of weighting coefficients was convolved with a circularly symmetrical, two-dimensional
gaussian function of half-width 1.5°, representing the angular sensitivity function of each
receptor (Hardie 1979; Dubs 1982) to obtain the overall receptive field of the L. m.c. The
theoretical curves depict the mean values of excitation or inhibition expected at various
angular distances from the Lm.c. visual axis; these were obtained by averaging the
excitation or inhibition from individual receptors in the 7 x7 array that lay within
concentric rings, each 1° thick, centred on the visual axis.

wavelength 20°, drifting at a constant velocity of 240° 5. The contrast corresponds
to the mean contrast in natural scenes (as determined from 70 scans of the type
shown in figure 3) and the combination of pattern wavelength and velocity
generates a temporal modulation in each receptor and 1.m.c. of 12 Hz, which is close
to the peaks of their respective frequency responses (French & Jérvilehto 1978).
Root mean square noise levels were measured directly from the neuron’s graded
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responses and, because the relation between response amplitude and contrast is
approximately linear for small contrasts, the noise levels were equated with the
response to the grating. The receptive fields of the l.m.cs were determined at the
same mean luminances by using sinusoidal gratings of various spatial wavelengths
to determine the spatial frequency response and then subjecting these data to an
inverse Fourier transform so as to obtain the spatial profile of the receptive field
(full details of this method are given in Dubs (1982)).

The measured receptive fields of 1.m.cs change with mean luminance in the way
predicted by the theory. As the signal: noise ratio drops, the surround extends and
weakens, but under all the conditions that we have measured the surround is
somewhat more diffuse than the theory predicts (figure 10). It is clear that the
lateral inhibition exhibited by fly l.m.cs does not minimize the dynamic range
required to register fine spatial detail. Can any functional significance be attached
to the observation that this class of interneurons does not precisely conform to the
predictive encoding hypothesis developed for stationary, or almost stationary,
patterns?

We suggest that fly .m.cs are better suited for sampling rapidly moving scenes
partly because the powerful transients essentially abolish the response to a step
change in contrast within 250 ms (Laughlin & Hardie 1978). Significant image
movement modifies the predictive coding hypothesis in two ways. The first is
comparatively trivial. The finite duration of the receptor response blurs moving
objects, decreasing their apparent contrast (Srinivasan & Bernard 1975) and so
reducing the signal:noise ratio. To explain the broad surrounds of l.m.cs this
motion blur would have to demodulate the contrast to 10 % of its original value,
and for light-adapted fly photoreceptors such demodulation is experienced by
temporal frequencies of 120-150 Hz (Zettler 1969 ; Leutscher-Hazelhoff 1975). To
achieve this frequency the finest resolvable grating would be moving at approxi-
mately 600° s™! and coarser gratings would have to move faster. Flies do turn at
these speeds (Collett & Land 1975). However, motion at this, and at lower
velocities, requires a second and more substantial modification to the predictive
coding hypothesis because the photoreceptors and the inhibitory network cannot
adequately resolve the correlated parts of the pattern. The problem of coding
moving scenes is discussed more fully below.

The predictive encoding of moving scenes

When a scene moves at constant velocity one can, in principle, exactly predict
the present value of the signal in a given receptor by simply recording the past
value of the signal from another receptor further ‘upstream’. This is not a
statistical prediction but a purely deterministic one, relying on a priori knowledge
of the speed and direction of motion. The simplicity and attractiveness of this
scheme is deceptive. One must take into account that motions are generally
unpredictable in direction and speed, so that this exact prediction requires
neuronal circuitry that continually measures speed and direction of motion and
uses this information to locate the inputs from the relevant receptors. This degree
of complexity seems unsuitable for early processing and there is little evidence that
retinal neurons are involved in such sophisticated computations.
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Let us return to the original notion of statistical spatial prediction, and see how
it can be applied to a moving scene. Assume that the visual scene is spatially
correlated over 2° and moves at an angular velocity of 300° s1. If the photoreceptor
integration time is taken to be 20 ms (Howard et al. 1982), the scene would move
a distance of 6°, or three spatial correlation lengths, during this time. Thus, at any
given instant, only 1/4/3 of the amplitude of the photoreceptor’s response would,
on average, depend upon the gpatial intensity pattern that is presently in the
vicinity of the receptor (i.e. within one spatial correlation distance, 2°). The
remaining fraction of the response amplitude would depend upon patches of the
scene that are further away, and would consequently be of no use in extracting
any statistical prediction of local intensity other than the mean value. (A
quantitative description of this effect is given in Appendix 2). Thus, as the speed
of the scene increases, the ‘ predictive’ fraction of the receptor response diminishes.
This reduction applies to a receptor response that itself decreases in amplitude as
the scene moves faster, because the receptor behaves as a low-pass filter in the time
domain (Zettler 1969). Thus, it is clear that, if one assumes that photocreceptor
noise is independent of object speed, then the signal: noise ratio of the ‘predictive’
fraction of the photoreceptor response steadily diminishes as the object speed
increases, until one reaches the limiting condition when the only statistically useful
component of the receptor signal is its mean value. In this limiting situation, one
would expect lateral inhibition to be uniformly spread out over a large number
of receptors, because the entire inhibitory field would be geared to predicting only
the mean value of the receptor signal. Apparently, this is roughly the condition
under which the fly’sl.m.c. neurons operate. It is interesting to note that increasing
the object speed has the same effect as lowering the luminance: both reduce the
signal : noise ratio of the predictive component of the receptor signal, although for
different reasons. Thus, diffuse spatial inhibition is to be expected at low
luminances or at high object speeds. The former situation applies to X-type retinal
ganglion cells at low luminances, while the latter situation applies to the fly’s1.m.c.
neurons at moderate levels of illumination (10 cd m~%). Interestingly, lateral
inhibition in the l.m.cs appears more diffuse when measured with rapidly moving
gratings than with slowly moving ones (Dubs 1982).

Given that the fly’s l.m.c. neurons might be better suited to encode rapidly
moving scenes, it is interesting to examine whether the transient signals from the
excitatory centres of their receptive fields are involved in temporal prediction.

Testing for temporal predictive coding

Using standard intracellular recording techniques, we are able to test whether
fly L.m.cs employ predictive coding in the time domain because we can measure
the relevant parameters, namely the l.m.c. ‘impulse response’, the photoreceptor’s
time constant and the signal:noise ratio. The l.m.cs were adapted to different
background levels, spanning a range of three logarithmic units, and were presented
with a brief (5 or 10 ms) flash superimposed upon the background to produce a
small response (less than 7 mV); 200 or 400 consecutive responses were averaged
to enhance the reliability of the data. At each background intensity, the relation
between response amplitude and stimulus contrast was determined as described
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by Laughlin (1981 b), and the voltage noise level was measured. At each background
intensity, the known linear relation between contrast and response amplitude was
used to convert the cell’s voltage noise into the standard deviation of an equivalent
contrast signal. Finally, the signal:noise ratio at each background intensity was
obtained by dividing the mean contrast in the natural scenes that we surveyed
(0.4) by the noise, expressed in equivalent contrast, at that background. The
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Fioure 11. Comparison of experimentally measured impulse responses of large monopolar

cells (I.m.cs) in the fly’s visual system (solid curves) with fields theoretically expected
on the basis of predictive temporal encoding (dotted curves). The l.m.c. impulse responses
and signal :noise rgtios (8/N) were measured at four different luminances, spanning a range
of three logarithmic units. In each case, the theoretical weighting function was calculated
as shown in figure 9, a receptor integration time of 10 ms being assumed. For each
luminance, this theoretical weighting function was then convolved with the receptor’s
impulse response. Over the range of luminances that was investigated, the receptor’s
impulse response did not change substantially in time course, and its half-duration lay in
the range 8-12 ms. At each luminance, the receptor’s impulse response was well approxi-
mated by the logarithmic-normal function (t) = e 11o8®/tp)1*/2e* (Howard 1981). This
approximation was used in computing the convolutions, with ¢, = 14.6 ms and o = 0.34 in
(@), t, =114 ms and o = 0.31 in (b) and ¢, = 10.0 ms and ¢ = 0.34 in (¢) and (d). Scale bar
in (@) applies also to (b)—(d).

impulse response of the receptor, and its integration time (A¢ in equation (2)) was
measured at the appropriate background intensities by using the techniques
described by Howard (1981). The measured signal:noise ratios and integration
times were used to model the impulse response function required for predictive
coding as described in the legend of figure 11, and the results were compared with

the

measured impulse response. There is good agreement between experiment and
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theory. In particular, the inhibition appears at the appropriate signal:noise
ratio and has the strength and tinie course required for predictive coding. In
the fully light-adapted cell (S/N = 9.4 in figure 11), the inhibition is slightly
more powerful than is required for predictive coding and this suggests that, in
addition to removing correlation and minimizing the dynamic range that is
required, the system is further accentuating high frequencies.

It is interesting to note that retinal ganglion cells in the cat exhibit a powerful
temporal inhibition of their centre responses which disappears at low intensities
(Enroth-Cugell & Shapley 1973). Unfortunately measurements of signal:noise
ratios and of receptor integration times are not yet available for this system so
that it is impossible to assess the degree to which temporal inhibition effects
predictive coding in these cells.

DiscussioN

The theory of predictive coding provides a quantitative analysis of the function
of lateral and temporal inhibition in the retina. As recently and independently
suggested by Barlow (1981), the inhibitory interactions exploit the correlations
between nearby response levels to generate a statistical estimate of the signal
expected at a certain point in space or time. This prediction is then subtracted
from the signal that actually arrives at the point, so as to reduce the range of signal
amplitudes that are encountered by the removal of a redundant component. Thus
incoming signals can be amplified more, so as to render them more resistant to
contamination by intrinsic noise generated at higher levels.

Our formulation of the predictive coding hypothesis has a number of advantages.
Its execution requires simple neuronal interactions of the type exhibited during
the early processing of visual information. The analysis is done in the spatial and
temporal domains: so by modelling directly the local interactions it seeks to
explain without recourse to the added complications of Fourier analysis. This
choice also makes it easier to identify a major form of redundancy from the
autocorrelation function. Moreover, the quantitative predictions of the theory are
substantive because they are formulated without recourse to assumptions about
the value or use of different signal components. Predictive coding regards all
information as being equally important, irrespective of whether it is carried by low
or high frequencies. It only removes redundancy to help minimize the known
limitations of neuronal signal capacity, and it does this in an objective, statistically
based fashion. Most important of all, we have verified the quantitative predictions
of the theory by analysing receptive fields and patterns of temporal antagonism
in the fly’s retina.

The analysis of predictive coding, and its successful application to the compound
eye of the fly, raises several questions. First, what effects do retinal nonlinearities
have on predictive coding, as analysed here? Secondly, what is the relation
between predictive coding and the previous theories advanced for the function of
retinal antagonism, and to what extent are these theories fulfilled by the available
data? Finally, since predictive coding is a simple means of promoting coding
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efficiency, how important is the ‘neat packaging of information’ (Barlow 1961b)
to retinal function and what factors are likely to influence coding efficiency ?

The effects of nonlinear retinal transfer functions

For simplicity we have analysed the case of predictive coding in a linear network,
but our conclusions are not substantially altered by two types of nonlinearity found
inretinas. These are the compressive intensity—response functions of photoreceptors
(Norman & Werblin 1974), which combine with light adaptation to produce an
effectively logarithmic transformation of the intensity signal, and the nonlinear
synaptic transfer of signals from photoreceptors to interneurons (Werblin 1974;
Shaw 1978). These monotonic nonlinearities do not decorrelate retinal signals, they
modify space and time constants of correlation and alter signal:noise ratios.
Predictive coding is rather insensitive to the space and time constants of
correlation so that, in this regard, nonlinearities will have a negligible effect upon
the receptive fields it requires. Since the precise forms of retinal transfer functions
are often intensity-dependent, such insensitivity could be advantageous. For the
more important parameter, signal:noise ratio, the linear analysis shows that
predictive coding is most sensitive to changes when signal and noise have similar
amplitudes (figures 6,9) and thisis precisely the condition under which nonlinearities
have least effect.

In the fly retina, where we rigorously tested and confirmed the validity of our
predictive coding model, the relevant nonlinearities have been measured (Laughlin
& Hardie 1978). They are not severe enough to necessitate the added complications
of a nonlinear model. This is principally because most of the signals generated by
natural scenes have contrasts between zero and 0.5 and over this range the
amplitude of receptor or interneuron response is proportional to contrast (Dubs
etal. 1981; Laughlin 1981b). Essentially, the receptors’ logarithmic transformation
ensures that gain is inversely proportional to mean intensity, as required for
contrast coding (Laughlin 1981a). Thus, in any retinal region operating at one
mean luminance, an approximately linear contrast signal is superimposed upon a
d.c. bias, and this bias voltage is a logarithmic function of mean intensity.
Subtractive inhibition removes the bias from the responses of fly first-order
neurons (Laughlin & Hardie 1978). Predictive coding suggests that the area over
which this bias is computed should be such that sensitivity to small contrast
fluctuations can be maximized. Thus, compressive intensity-response functions
operate in conjunction with predictive coding to enable the fly’s retina to operate
over a wide range of intensities.

However, there are instances of severe retinal nonlinearities that invalidate our
linear model (e.g. nonlinear summation within the receptive fields of Y-type retinal
ganglion cells (Enroth-Cugell & Robson 1966)). None the less, the principle of
predictive coding does not require linearity. In its most general form, predictive
coding uses not only first-order correlations in the visual scene (as we have done
here) but higher-order correlations as well, to generate a prediction based on a
nonlinear function of receptor signals in the vicinity. The general theory is outlined
in Papoulis (1965). However, its application is warranted only when the existence
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of higher-order correlations in visual scenes is established and their statistics are
measured. The volume of data and the computational effort increase exponentially
with the order of the correlation.

The functions of lateral and temporal inhibition

Several roles have been advanced for lateral inhibition (see, for example,
Hartline & Ratliff 1972) and each of these prospective functions has been, or can
be, extended into the time domain to provide a role for temporal inhibition. All
these functions are undoubtedly performed by inhibition because each role is
simply a reformulation of lateral inhibition’s filtering properties. However, to
establish the significance of each, one must determine the degree to which the
measured inhibitory interactions of neurons execute each of the particular roles.
As we have seen in trying to assess the degree to which predictive coding is done,
many of the relevant data, and in particular the measurements of signal : noise ratio,
are lacking. None the less, a comparison made between the basic philosophies of
each proposed role and, wherever possible, the quantitative predictions of the
inhibitory patterns that they require is instructive because it suggests that the
three roles, predictive coding, redundancy reduction and d.c. bias elimination, are
interrelated and are of more importance than either deblurring or edge
enhancement.

(i) Redundancy removal

This could yet prove to be the most fundamental formulation of the functions
of lateral and temporal inhibition. It simply states that sensory systems reccive
signals that are highly redundant and that neural processing should, in the first
instance, be directed towards minimizing this redundancy so that the sensory
information can be represented most compactly and processed most economically
(Attneave 1954; Barlow 1961a—¢c, 1981). To our knowledge the only previous
formulations of inhibition’s role in redundancy reduction have been qualitative;
so our finding that predictive encoding minimizes a certain form of redundancy
is of some interest. The analysis of predictive coding also vindicates the original
suggestion that redundancy reduction is beneficial, since it removed redundancy
while setting out to protect signals against intrinsic noise. Clearly, it isadvantageous
to remove the redundant so as to provide more space for the better representation
of the essential message.

We emphasize again that predictive coding, as presented here, does not eliminate
all redundancy from the visual signal. To do so would be a daunting task since
the retinal image is composed of millions of samples, many of which can be related
by statistics of a high order (Kretzmer 1952). Predictive coding only removes the
redundancy between pairs of points, as manifested by the autocorrelation function,
yet this simple coding procedure is obviously effective because it halves the
amplitude of the signal, as expressed in intensity units (figure 6).

(ii) Removing the d.c. bias

The d.c. bias is the standing component of the signal upon which all fluctuations
in intensity are superimposed. There is no question that the d.c. bias is redundant
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(Barlow 1961 a) since it remains constant and unchanging, and that by subtracting
the bias away the range of signals is reduced to allow for greater sensitivity (Barlow
& Levick 1976). In implementing this scheme the critical question concerns the
extent, in space and time, over which the d.c. bias should be determined because,
strictly speaking, the d.c. bias refers to the zero frequency component and is
computed as a single value spanning either the whole retina or a very long time
period. However, this global definition of bias is usually inappropriate for coding
the information from a particular point. For example, if a scene is equally divided
into an area of highlight and an area of shade, the global bias will fall midway
between the biases of each half. This estimation of bias would be very unsuitable
because its subtraction will annihilate the shaded part, and leave substantial bias
within the area of highlight. The predictive coding theory is an extension of the
d.c. bias hypothesis which addresses the question of the appropriate span over
which the bias, or local mean signal, should be determined. Because it subtracts
an appropriately weighted amount of the signal from each point so as to minimize
the dynamic range, it defines the optimum extent of space and time over which
the mean should be computed, and hence the optimum extent of lateral and
temporal inhibition. Indeed, wherever the space and time constants of retinal
inhibition have been measured, the results indicate that the retina computes a
‘local’ mean of the intensity, rather than a ‘global’ mean (e.g. in Limulus (Brodie
et al. 1978), fly (Laughlin & Hardie 1978; Dubs 1982) and cat (Enroth-Cugell &
Robson 1966; Enroth-Cugell & Shapley 1973)).

(iii) Deblurring

The idea that lateral inhibition compensates for optical blurring by squeezing
spread edges back to shape is as old as the idea of lateral antagonism itself (Mach
1865), and the requirements for deblurring are readily obtained by applying
Fourier analysis (Ratliff 1965). A completely deblurred response will represent all
frequencies below the cut-off with equal sensitivity. Because optical sampling and
transduction attenuate high frequencies, inhibition must selectively reinforce the
high-frequency components, as indeed happens, to produce a mechanism with a
flat frequency response (figure 12b). By comparison the predictive encoding
hypothesis postulates an overall frequency response with a pronounced low-
frequency roll-off (figure 12a).

Most of the experimental evidence available in the literature favours the
predictive encoding hypothesis, and argues against significant deblurring occurring
in the early stages of visual processing. First, predictive encoding predicts the
widely observed low-spatial-frequency attenuation (in man (DeValois et al. 1974),
monkey (De Valoisetal. 1974), cat (Enroth-Cugell & Robson 1966), Limulus (Brodie
etal. 1978) and fly (Dubs 1982)) while deblurring does not. Secondly, signals coming
from the surround of a receptive field can be selectively abolished by using stimuli
with high temporal frequency, because the surround has a longer time constant
than the centre (Robson 1966; Brodie et al. 1978; Dubs 1982). Thus, gratings that
move rapidly or reverse contrast frequently can be used to evaluate visual
performance without the surround, and thereby assess the functional role of the
surround. If the surround played an encoding role, one would expect that spatial

15 Vol. 216. B
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contrast-sensitivity functions (c.s.fs) measured with low- and high-temporal-
frequency gratings would differ as shown respectively by the solid and dashed
curves of figure 12a. The low-spatial-frequency attenuation would disappear at
high temporal frequencies, while the high-spatial-frequency sensitivity would be
essentially unaltered. This is because the primary function of lateral inhibition in
this case is to suppress the predictable component of the signal (i.e. d.c. and low
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Fiaure 12. Comparison of the spatial contrast-sensitivity functions that are expected from a
predictive coding scheme (solid curve, left) and a deblurring scheme (solid curve, right). The
contrast-sensitivity function (c.s.f.) shows gain (plotted on an arbitrary linear scale) against
spatial frequency (cycle deg™). We have assumed that the angular sensitivity function of
each receptor is gaussian with a half-width of 1.5°, and that the receptors are arranged in
a two-dimensional array as in figure 8a, spaced 1° apart in either direction. The dashed
curve represents the c.s.f. of the optics alone; it is the Fourier transform of the receptor’s
angular sensitivity function. The c.s.f. for predictive coding (solid curve, left) was obtained
by convolving the weighting coefficients of the example of figure 8d with the receptor’s
assumed angular sensitivity function and taking the Fourier transform of the resulting
overall receptive field. (The slight levelling-off of this curve at the high-frequency end is
an artefact arising from using a finite-sized array (7 x 7) in computing the receptive fields
of figure 8.) The solid curve on the right represents the c.s.f. of an ideal deblurring scheme
which transmits uniformly all spatial frequencies ranging from zero to the sampling limit
of the array (0.5 cycle deg™). The c.s.f. for predictive coding can be geometrically scaled
to apply to visual systems that have finer or coarser mosaics than the example shown here,
as discussed in the text. This is illustrated by the lower horizontal scales, wherein spatial
frequency v is normalized to the sampling limit of the array, v,.

spatial frequencies). On the other hand, if the surround played a deblurring role,
one would expect that the spatial c.s.fs measured with low- and high-temporal-
frequency gratings would differ as shown respectively by the solid and dashed
curves of figure 12b. In this case, the sensitivity to high spatial frequencies would
become poorer at high temporal frequencies, while the low-spatial-frequency
sensitivity would be essentially unchanged. The available experimental data (for
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man (Robson 1966), Limulus (Brodie et al. 1978) and fly (Dubs 1982)) follow the
prediction of figure 12a, not figure 12b, thus arguing against deblurring and
favouring the encoding hypothesis. That is not to say that deblurring is never
performed by the visual system. Indeed, the phenomenon of ‘contrast constancy’
described by Georgeson & Sullivan (1975) suggests that high spatial frequencies
are selectively boosted, especially when their contrast (or signal:noise ratio) is
high (Snyder & Srinivasan 1979). However, we suggest that this type of image
restoration is not a major consideration in early visual processing. In our opinion,
the periphery is concerned with encoding the visual image in a simple and efficient
way, rather than with accurately reconstructing it.

(iv) Edge enhancement

Any mechanism that selectively attenuates low frequencies brings the high
frequencies contained by edges into greater prominence. In addition, where objects
are uniform across their extent, little information is provided by intensity readings
made between edges, so that edge enhancement removes this source of redundancy
(Barlow 1961 a). The distinctive characteristic of the edge-enhancement hypotheses
is the concept of feature extraction. For example, the detailed theory of early visual
processing set out by Marr & Hildreth (1980) uses centre—surround receptive fields
with gaussian profiles to isolate points of inflexion in intensity distributions. These
‘zero-crossings’ delineate the midpoints of blurred edges, provided that the edges
are relatively straight. In addition, given that the spatial frequency components
of the relevant signal are limited to one octave, the positions of zero-crossings
completely describe the retinal image. The necessary receptive fields are very
similar both to the ‘difference of gaussian’ receptive fields inferred from human
psychophysics (Wilson & Bergen 1979) and to the types of receptive field required
for predictive coding. This similarity emphasizes that, in common with alternative
functions of lateral inhibition, edge detection and predictive coding are in no way
exclusive. The more advantages a given filtering or sampling procedure has, the
better! The difference is that predictive coding takes into account the qualities of
the retinal image in order that it might be encoded within the constraints imposed
by neuronal signals. By comparison, edge detection isolates a single characteristic
of a scene, that can, through its spatial distribution, provide an adequate and
compact description, thought suitable for subsequent processing at higher levels.
Until we know more about the dependence of higher-order processing on filtering
at lower levels, the assessment of the role of edge detection is difficult.

Coding efficiency in early visual processing

Our comparisons between the different roles of lateral inhibition suggest that
deblurring is relatively unimportant, and that the case for edge detection is
unproven. Inhibition is far more effective at reducing redundancy and removing
d.c. bias, in the manner suggested by predictive coding. The essence of this coding
strategy is to remove some components of the incoming signal in the interests of
what Barlow called ‘the neat packaging’ of information into neurons (Barlow
1961b). Why is efficient coding necessary and how does it depend upon the
properties of the incoming signal and noise, and upon the filter characteristics of

15-2
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the neurons that process this input ¢ These fundamental questions can be explored
by discussing the findings and implications of the predictive coding hypothesis.

(i) Why is coding necessary?

If the nervous system operated without introducing intrinsic noise then there
would be no need to encode for protection against it. However, the inevitable
presence of intrinsic noise sets a limit on the information capacity of any
interneuron by defining a smallest resolvable signal, even when the input is
noise-free. Thus, any component of the signal that is attenuated during processing
has its information content reduced because it can no longer be measured so
accurately against the background of intrinsic noise. Given that high spatial
frequencies are inevitably attenuated by the optics (see, for example, Campbell
& Gubisch 1966), a coding strategy is necessary to protect signals from intrinsic
noise. Moreover, as intrinsic noise limits the information capacity of single neurons,
and the number of neurons available in the retina is finite, there are definite
advantages to be obtained from ‘neatly packing’ (Barlow 19615b) the incoming
signals into the available channels, by removing redundancy. As we have seen,
predictive coding provides for both noise-resistant encoding and redundancy
reduction.

(ii) What information is lost during coding?

It may not be necessary to throw away information in order to eliminate
redundancy but it appears that inhibitory mechanisms make this sacrifice, in the
interests of ‘neat packaging’. Examination of the frequency response of an
inhibitory mechanism shows that it rejects information about low frequencies
(figure 12a). These components are attenuated so that, when intrinsic noise is
added, their resolution is impaired. It is interesting to note that the seemingly
drastic procedures of predictive coding, which reduce the input to a small
‘difference signal’, only completely reject information about one frequency
component, the zero frequency or the true d.c. bias (figure 12a). All other
frequencies are represented to a greater or lesser degree, but low-frequency
resolution is sacrified in order that fine detail can be resolved.

(iii) Some factors influencing coding

The predictive coding theory illustrates that, to be effective, the coding filters
are matched to the characteristics of the incoming data, the incoming noise, the
response range of neurons, and the intrinsic noise of the nervous system. The idea
of matched sampling and filtering is well established in visual systems. It is argued
that the spacing of photoreceptors is matched to the quality of the optical image
(Miller 1979; Snyder 1979) and that the mosaics of retinal ganglion cells are
matched to the predictable patterns of retinal input generated by factors such as
the increasing fineness of texture with distance from the eye, and to the flow
patterns that are produced in the visual field by locomotion (Wehner 1981). This
matching eliminates the redundancy that might result from oversampling (Hughes
1977, 1981). It has also been shown that the nonlinear contrast coding functions
of visual interneurons can be matched to the statistical distributions of contrast
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in natural scenes to promote the most efficient use of a neuron’s dynamic range,
again through the elimination of redundancy (Laughlin 19815). Note that this last
finding is related to the role of inhibition advocated here, because the shape of the
receptive field and the extent of the temporal inhibition also determine the
dynamic range that.is required. This important relation is well demonstrated by
the predictive coding hypothesis. If there is weak inhibition, or the inhibition has
a longer time constant or a wider space constant, then the difference between the
predicted and actual signals increases. Thus, in any neuron’s functioning, there
should be a relation between the statistical distribution of its inputs, its filtering
properties and its dynamic range.

(iv) The influence of movement

Movement, and in particular the speed and predictability of movement, has a
profound effect upon predictive coding for it completely alters the pattern of
correlation, at least in the spatial domain. Although we have discussed qualitatively
the effects that motion should have on the receptive fields of fly l.m.cs, our rigorous
quantitative treatment has been confined to the spatial domain on the one hand,
and the time domain on the other. We have not attempted the more general
problem of predictive coding in the spatio-temporal domain. Extending the
analysis to the spatio-temporal domain is technically challenging, but conceptually
straightforward. In principle, one is interested in predicting the present value of
the receptor signal, based upon past values of the signal in this receptor and in
surrounding receptors. To derive the spatio-temporal characteristics of the desired
receptive field, one would first have to measure, for a scene with realistic spatial
and temporal (movement) characteristics, a series of spatio-temporal correlation
coefficients and use them in a matrix analogous to that of equation (15). A typical
element of this matrix would be the correlation coefficient between the present
value of the signal at receptor ¢+ and the value of the signal at another receptor
J, measured ¢ seconds ago; various elements of the matrix would pertain to various
t, j and t. The result of inverting this matrix would be a set of weighting
coefficients that specify the characteristics of the desired receptive field in space
and time. While this type of calculation has to await measurement of the
spatio-temporal correlation coefficients, a task that is by no means trivial, one can
make tentative guesses as to the kind of spatio-temporal receptive field that is
likely to result. Given that the scene is likely to be moving, the future time course
of a receptor’s signal can best be predicted by looking at the immediate history
of the signals of receptors in the immediate vicinity. Remote receptors would not
be very helpful in statistical prediction, but would aid in obtaining a reliable
estimate of mean intensity. Thus, one would expect fast-acting, short-lived
inhibition from nearby receptors and slower longer-lasting inhibition from remote
ones. Detailed measurements of the spatio-temporal characteristics of inhibition
are not yet available in the literature.

(v) Is coding efficiency of general importance to retinal function?

Retinal bipolar and ganglion cells and the large monopolar cells of compound
eyes share three important properties: lateral antagonism, temporal inhibition and
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the narrow dynamic range that antagonism enables (Laughlin 1981 a). These three
properties enhance coding efficiency by sweeping away redundancy to make room
for the better representation of the essential information content of the incoming
data. As has been pointed out for the related principle of a nonlinear dynamic range
that enhances information capacity (Laughlin 1981b), these transformations differ
from the usual concept of a neural filter that picks out specific attributes of the
incoming data. The type of filtering that enhances coding efficiency is not specific
but generalized, for it retains the components that are richest in information at
the expense of the poorer, irrespective of what the information actually represents.
The observation that several diverse types of retinal neuron probably possess the
essential elements required for predictive coding and redundancy reduction,
suggests that coding efficiency is one of the fundamental parameters determining
the operations of the peripheral visual system. However, the predictive coding
hypothesis formulated here has covered but one aspect of coding efficiency, the
representation of fine spatial and temporal detail. There could well be other
applications. For example, movement has a strong influence on coding procedures
and it has been suggested that this accounts for the different sampling procedures
of X- and Y-cells in the cat retina (Hughes 1981). It has also been argued that
suitably organized lateral inhibition can prefilter visual signals in such a way as
to promote sensitive detection of movement (Srinivasan & Dvorak 1980). It would
be interesting to see if such a division of labour were more effective than employing
a single class of cells to cover all situations.

It would be surprising if the principles of efficient coding could not be applied
beyond the confines of the visual system. The essence of efficiency as expounded
here is to make the best use of available neurons by matching their input—output
properties to the expected occurrence of signals. There must be many situations,
such as the coordination of muscular activity, where the number of possible
patterns of activity are severely constrained. It must be stressed, however, that
while coding efficiency may be of general relevance it may not be universal. The
nervous system not only gathers and packages information: it weights this
information according to its biological significance.

This work stemmed from a series of informal group discussions, covering a
variety of topics in vision, held in our laboratory. We are indebted to Jonathon
Howard, who joined us in these discussions and drew our attention to the concept
of predictive coding. We thank Allan Snyder, Stephen Shaw, Peter McIntyre and
Richard Payne for reviewing preliminary versions of the manuscript. This study
was enthusiastically encouraged by Adrian Horridge, F.R.S.
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APPENDIX 1

This section describes in detail the computations made in deriving the inhibitory
profiles.
We use the example of figure 6b to illustrate the procedure. In this example we
have M (signal mean) = 1.0,
S (signal s.d.) = 0.03 (A1)
and N (noise s.d.) = 0.03

and we have assumed that the spatial autocorrelation function of the scene is
exponential, with a space constant D equal to five receptor widths.
The spatial autocorrelation function of the visual scene is then given by

R(x) = M?+ S2e~12l/D, (A2)

where x is measured in receptor widths. The shape of this function is roughly as
in the experimental measurements shown in figures 3 and 4. It has a maximum
value of M?+ 82 at x = 0, and it decays exponentially to a value of M2 as |x| — 0.
(Note that R(x) is not normalized here.)

The receptors are denoted by the numbers —5, —4, —3,...,0,1,2,..., 5, as
shown in figure 6. We denote by R; ; the correlation between the signals in
receptors ¢ and j; that is, R; ; = x;x;. We then have

R, ,=M*+8*+N* ((=-5,—4,...,5)
liei ., (A 3)
and R; ;= M2+ 8%e7 10D (45 £ j), }
where the N? term disappears for 7 # j because the noise in the various receptors
is assumed to be uncorrelated.
For our example, equation (1b) can be expressed in matrix form as:

—R—s, 5 B 4 B 5. R [ h_s ] [ Ry, 5 |
R, s R, 4 R, 5. .R,; h_y R, 4 A
= 4
R 5 R, 4 R—:z’ 3. By 5 h_s Ro, 3| { )
L Rs, s Bs s Bs 5 ...B55 | [ hs | [R5 |
where h_g, h_,, . . ., by denote respectively the inhibitory weighting coefficients from

receptors —5, —4,..., 5.

The R; ; values are calculated from equations (A 1) and (A 3), and are inserted
into the above matrix equation. Note that the R matrix is symmetrical and all
of the diagonal elements are identical. This equation is solved (by matrix inversion
on a computer) to obtain the following values for the inhibitory weighting
coefficients: h_y=—0.041, h_,=-0.047, h_3=-—0.070, h_,=-—0.121,
h_y=-0221, h,=-0.221, h,=-0.121, hy=-0.070, h,=-—0.047 and
hs = —0.041. The profile corresponding to these coefficients is shown in figure 6b.

For an exponentially decaying autocorrelation function, as in this example, it
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can be shown that the R matrix is non-singular provided that D is finite. In our
computations we have experienced no difficulty in inverting the B matrices derived
from either exponential or gaussian autocorrelation functions; we have not
examined other functions. For a general treatment of the properties of B matrices
derived from autocorrelation functions, the reader is referred to Grenander &
Szegd (1958).

Receptor noise affects only the diagonal terms of the E; ; matrix; increased noise
causes these values to be larger (see equation (A 3)), and the A; values that result
from solving the equation are then smaller and distributed more uniformly over
the receptive field.

The procedure for dealing with two-dimensional receptive fields is very similar
to that described above. In a 7 x 7 receptor array, for example, the signal at the
central receptor is predicted from the signals of the 48 surrounding receptors. While
calculating the E; ; coefficients the geometry of the receptor array has to be taken
into account, because this computation requires knowledge of the distance between
the 7th and the jth receptor.

The calculation for temporal encoding is similar to that for one-dimensional
spatial encoding, except that the prediction is one-sided in this case (i.e. it is based
only on past samples, not on future ones).

APPENDIX 2

Here we examine the effect of movement on spatial prediction. If one assumes
that the receptor response can be modelled as a linear dynamical system that
transduces light to receptor potential, the receptor response v(t) evoked by a
temporal pattern of optical stimulation f(t) is given by (see, for example:
Srinivasan & Bernard 1975; Howard 1981)

o0 = [ - e

where /(£) is the impulse response function of the photoreceptor, i.e. the response
to a brief flash of light, and f(t) and v(t) are defined in terms of the deviations from
their respective mean values. If 2(£) is approximated by a rectangular pulse with
duration equal to the receptor’s integration time Af, the above equation can be

rewritten as At
o0~ [ fu-gde

Since, in our example on page 444, the distance moved in one integration time
is three correlation lengths, the above integral can be viewed as the sum of three
statistically independent samples of f(t) taken in the interval 0 < § < A¢:

v(t) ~ JAE f(t— AL + AL f(t—LAL) + 3AL f(E—3AL).

Let f denote the root mean-square (r.m.s.) amplitude of f(t) and » denote the r.m.s.
amplitude of v(t). Since the three samples of f(t) are statistically independent, we
have v~ }Aty/3f = J5Atf. The r.m.s. contribution of each sample to the
receptor response is 3A¢ f, which is 3 of the r.m.s. value of the response.
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