Deepak Pathak
UC Berkeley/BAIR

Curiosity-driven Exploration by Self-supervised Prediction

Wednesday 11th of October 2017 at 12:30pm
560 Evans

In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent’s ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch.

Deepak Pathak is a PhD student in the department of Computer Science at the University of California Berkeley, working with Prof. Trevor Darrell and Prof. Alexei Efros. His research interests lie at the intersection of machine learning, computer vision and robotics, with a focus on building intelligent systems that can learn with minimal human supervision by bootstrapping their own experience. Deepak's work has been supported by NVIDIA Graduate Fellowship and he has spent time at Facebook AI Research and Microsoft Research.

Join Email List

You can subscribe to our weekly seminar email list by sending an email to majordomo@lists.berkeley.edu that contains the words subscribe redwood in the body of the message.
(Note: The subject line can be arbitrary and will be ignored)