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UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY*

DAVID L. DONOHO? AND PHILIP B. STARK?

Abstract. The uncertainty principle can easily be generalized to cases where the "sets of concentration"
are not intervals. Such generalizations are presented for continuous and discrete-time functions, and for
several measures of "concentration" (e.g., L and L measures). The generalizations explain interesting
phenomena in signal recovery problems where there is an interplay of missing data, sparsity, and bandlimiting.

Key words, uncertainty principle, signal recovery, unique recovery, stable recovery, bandlimiting,
timelimiting, Ll-methods, sparse spike trains

AMS(MOS) subject classifications. 42A05, 94A11

1. Introduction. The classical uncertainty principle says that if a function f(t) is
essentially zero outside an interval of length At and its Fourier transform f(w) is
essentially zero outside an interval of length Aw, then

(1.1) At. Aw>= 1;

a function and its Fourier transform cannot both be highly concentrated. The uncer-
tainty principle is widely known for its "philosophical" applications: in quantum
mechanics, of course, it shows that a particle’s position and momentum cannot be
determined simultaneously (Heisenberg [1930]); in signal processing it establishes
limits on the extent to which the "instantaneous frequency" of a signal can be measured
(Gabor 1946]). However, it also has technical applications, for example in the theory
of partial differential equations (Fefferman [1983]).

We show below that a more general principle holds: it is not necessary to suppose
that f and f are concentrated on intervals. Iff is practically zero outside a measurable
set T and f is practically zero outside a measurable set W, then

(1.2) ITllWll-
where IT and W] denote the measures of the sets T and W, and is a small number
bound up in the definition of the phrase "practically zero"--a precise definition will
be given later. In short, f and f cannot both be highly concentrated, no matter what
"sets of concentration" T and W we choose.

The uncertainty principle also applies to sequences. Let (X,),N:-I be a sequence of
length N and let (w) N-1

w=0 be its discrete Fourier transform. Suppose that (x,) is not
zero at N, points and that (:w) is not zero at Nw points. Then

(1.3) N,. Nw>- N.

The inequality (1.3) makes no reference to the kind of sets where (x,) and (w) are
nonzero: these may be intervals or any other sets.

The usual approaches to the uncertainty principle, via Weyl’s inequality or the
prolate spheroidal wave functions, involve rather sophisticated methods: eigenfunctions
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UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY 907

of the Fourier transform (Weyl 1928]), and eigenvalues of compact operators (Landau
and Pollak [1961]). In contrast, the more general principles (1.2) and (1.3) we discuss
here have elementary proofs. The discrete-time uncertainty principle follows from the
fact that a certain Vandermonde determinant does not vanish; the proof could be
taught in an undergraduate linear algebra course. The continuous-time uncertainty
principle requires only the introduction of the Hilbert-Schmidt norm of an operator,
and could be taught in an introductory functional analysis course (however, the more
general result need not be sharp; see 7).

Principles (1.2) and (1.3) have applications in signal recovery. The continuous-time
principle shows that missing segments of a bandlimited function can be restored
stably in the presence of noise if (total measure of the missing segments). (total
bandwidth)< 1. The discrete-time principle proves that a wideband signal can be
reconstructed from narrow-band data--provided the wide-band signal to be recovered
is sparse or "impulsive." The classical uncertainty principle does not apply in these
examples.

The discrete-time principle (1.3) is proved in 2; 3 proves a continuous-time
principle for L2 theory. These are then applied to signal recovery problems in 4 and
5. Section 6 proves another version of the continuous-time principle using L1 theory;
this has the rather remarkable application that a bandlimited function corrupted by
noise of unknown properties can be restored perfectly, without error, if the noise
is "sparse:" zero outside an (unknown) set of measure <l/(2.bandwidth)ma
phenomenon first discovered by Logan. We show here that the phenomenon derives
from the L-uncertainty principle.

The ll version of Logan’s phenomenon (the version of Logan’s phenomenon for
discrete time) can be used to show that an l algorithm can recover a sparse wideband
signal perfectly from noiseless narrowband data, provided the signal is sufficiently
sparse. This fact about the 11 algorithm has been demonstrated by Santosa and Symes
[1986]; we show here that it derives from Logan’s phenomenon and the ll uncertainty
principle.

Section 7 discusses the sharpness of the uncertainty principles given here; 8
discusses connections with deeper work, and mentions generalizations to other settings.
Appendix A identifies the extremal functions of the discrete-time principle.

2. The discrete-time uncertainty principle. Let (x,) be a sequence of length N and
let (w) be its discrete Fourier transform

N-1

2 Xt e-2riwt/N, W 0, N 1.(2.1) :w
,=o

As above, N, and Nw count the number of nonzero entries in (x,) and (w), respectively.
THEOREM 1.

(2.2) N, Nw >= N.

COROLLARY 1.

Nt + Nw >-_ 2x/.

The theorem bounds the time-bandwidth product; the corollary (which follows
immediately by the geometric mean-arithmetic mean inequality) bounds the total
number of nonzero elements. It is easy to construct examples attaining the limits set
in (2.2). For any N, the example {Xo 1; x,=0, t>0} always works. If N admits the
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factorization N k. l, the picket fence sequence

iiik 1, t=i’l fori=O,
(2.3)

(0 otherwise

has k equally-spaced nonzero elements. It is the indicator function of a subgroup of
{0, , N 1 } and its discrete Fourier transform is, up to a constant factor, the indicator
function of the dual subgroup (Dym and McKean [1972]); explicitly,

x/-IIk =kIII"The dual subgroup has nonzero elements, so that N,Nw k. N. In Appendix A
we show that apart from simple modifications, these are the only pairs of sequences
that attain the bound N,Nw N: the extremal functions for this uncertainty principle
are basically periodic "spike trains" with an integral number of periods in the
length N.

It is convenient to use the "wraparound" convention for (x,) and ()w)mto interpret
subscripts modulo N so that X,+u is identified with x,, and :w+u is identified with
Then, for example, u_ and o are consecutive entries in (:w). The proof of Theorem
1 is an application of the following key fact. If (x,) has Nt nonzero elements, no
consecutive elements of ()w) can all vanish. This will be proved below as a lemma.

To see how the lemma implies Theorem 1, suppose that N, divides N. Partition
the set {0, 1,. ., N- 1} into NNt intervals of length N, each. By the lemma, in each
interval )w cannot vanish entirely" each interval contains at least one nonzero element
of )w. Thus the total number of nonzero elements Nw >- N N, and we are done.

For equality N,Nw N to be attained, the Nw nonzero elements of ()w) must be
equally spaced; otherwise there would be more than N, consecutive zeros between
some pair of nonzero elements of ()2w)mbut the lemma disallows such gaps of length
>N,. This "gap argument" also shows that NtNw > N when N, does not divide N.
Let L=-[N/Nt], where Jr] denotes the smallest integer greater than or equal to r.

There is no way to spread out fewer than L elements among N places without leaving
a gap longer than N,. Thus Nw >- L, so NtNw > N. We now prove the lemma.

LEMMA 1. If (X,) has N, nonzero elements, then w cannot have Nt consecutive zeros.

Proof Let r,..., -u, be the sites where (x,) is nonzero, and let b.--x;, j
1,-.., N, be the corresponding nonzero elements of (x,). Denote by z,..., zu, the
Fourier transform elements" zj exp {-2ri/N. )}. Let w m + 1, , rn + N be the
frequency interval under consideration. Define

N,
b(z)m+k k=l,...,(2.4) gk=----

=l

AS m+k gk, the lemma says that gk 0 for some k in the range 1, , N,. We rewrite
the assertion (2.4) in terms of matrices and vectors. Define the matrix Z with elements

(z)"+

and the vectors g (gj) and b-= (b). Equation (2.4) takes the form

g Zb.

The conclusion of the lemma is that g 0 and we know that b 0 by construction.
Thus the lemma is true if the system

0= Zb

has no solution b -0, i.e., if Z is nonsingular.
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Rescale each column of Z by dividing by its leading entry z’/v/-. Since z;’ # 0,
this produces a matrix V that is nonsingular if and only if Z is. The matrix V is

1 1

Z ZN
2

Z ZN

Z7 ZN

But this is just the usual N, by N, Vandermonde matrix, which is known to be
nonsingular (Hoffman and Kunze [1971]). Its nonsingularity is equivalent to saying
that given N, data (y, z), j 1,. ., N,, with the z distinct, there is a polynomial in
z of degree N,- 1 that takes the values (y) at (z)a fact that can be demonstrated
by the Lagrange interpolation formula.

3. The continuous-time principle. Let f(t) be a complex-valued function of R,
with Fourier transform

f(w) ;f(t) e-t dt.

We suppose below that the Lz-norm off [f[[ ( If(t)[ dt) /2, is equal to one. We
may also take the norm of; Parseval’s identity [f(t)[z=](w)[2 says that I[[[
as well.

We say that f is e-concentrated on a measurable set T if there is a function g(t)
vanishing outside T such that ]If-g]] e. Similarly, we say that is e-concentrated
on a measurable set W if there is a function h(w) vanishing outside W with - h e.

TOM 2. Let Tand Wbe measurable sets and suppose there is a Fourier transform
pair (), with f and of unit norm, such that f is er-concentrated on T and is
e w-concentrated on en
(3.1) [W[. [Tl(1-(e+ew))2.

Before beginning the proof we introduce two operators; the first is the time-limiting
operator

(pf)(t){(t), t T,
otherwise.

This operator kills the part of f outside T. Moreover, it gives the closest function to f
(in the L-norm) that vanishes off T. Thus f is e-concentrated on T if and only if

f- PTf e.

The second operator is the frequency-limiting operator

(Pwf)(t) [ e2iwtf(W) dw.
W

Pwf is a partial reconstruction off using only frequency information from frequencies
in If g Pwf then g vanishes outside Moreover, g is the closest function to f
(in the L2-norm) with this property" f is e-concentrated on W if and only if [f- nwf]]
e. (This last statement is an application of Parseval’s identity.)

The norm of an operator Q is defined to be
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With these definitions in place, the proof of Theorem 2 takes only a few lines. Consider
the operator PwPT that first time-limits then frequency-limits. By the triangle inequality
and the fact that IIPII- 1, if f is eT-concentrated on T and f is e w-concentrated on
W, we have

(3.2) If- PwPf <= er + ew.

We shall see that (3.2) places a rather strict requirement on ITI" WI. Combined with
the inequality IIf- gl[->- [Ifll- IIll and the fact that f is of norm one, (3.2) implies that

PwPrf --> f

or equivalently, that

1 ET e W,

(3.3) PwPTf _>_ 1 er e w.Ilfll
In terms of the operator norm defined above, we conclude that a pair (f,f) with

fer-concentrated on T and few-concentrated on W can exist only if

(3.4) PwPr >-- 1 eT- ew.

We will see below that the norm of PwPT obeys the bound

(3.5) PwPT <- /1WI TI
Together (3.4) and (3.5) imply the theorem.

Our proof of (3.5) utilizes the Hilbert-Schmidt norm of PwPr. Define the
operator Q

(Qf)(t)=-f_q(s,t)f(s)ds.
The Hilbert-Schmidt norm of Q is just

I]QI]Hs-= Iq(s, t)[ 2 ds dt

It turns out that IlQIl..s > IIQII (Halmos and Sunder [1978]), and (3.5) and Theorem
2 follow from the calculation of IIPPllns=

LEMMA 2. PwPT II.s 4[ rllWl.
Proof.

(3.6)

(PwPTf)(s) fw e2"iwg ffT e-2=iwtf(t) dt dw

fT(fwe2=iw(-’) dw)f(t) dr,

so that

(PwPTf)(s)=I_oq(s,t)f(t)dt
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where

e2riw(s-t) dw,
q(s, t) =-- w

0 otherwise.

t6T,

Now

--2riwtLet g,(s) =- q(s, t) and note that ,(w) w" e where 1 w is the indicator function
of the set W. By Parseval’s identity,

=y ldw
w

-Iwl.
Thus I_ Iq(s, t)l ds Wl, and hence

PwPT s TI Wl.
In retrospect, this answer is clear since (3.6) shows that PwPr involves the integral of
a unimodular kernel (e2=iw(’-’)) over a set of measure WIlTI.

This proof gives much more information than just the stated conclusion. The norm

IIPP.II (which appeared in an unmotivated fashion) actually satisfies the identity

(3.7) [[PTPw sup

which follows straightforwardly from IlPwll 1. Let B2(W) denote the set of L2
functions that are bandlimited to W (i.e., g e B2(W) implies Pwg g). Then (3.7) yields

(3.8) IIPTPwll sup

Thus I]PrPwll in fact measures how nearly concentrated on T a bandlimited function
gB2(W) can be. The inequality IwIIrl>-IIPP.ll implies, for example, that if
]WILT 5, no bandlimited function can have more than 50% of its energy’ concen-
trated to T. This is a quantitative refinement of (3.1) and is often much more useful.
We regard any bound IIPrPwll-<_ c < 1 as an expression of the uncertainty principle.
In many of the applications we give below, the standard result involves IWIITI, but
the proof shows the key quantity is PTPw II.

Theorem 2 has an analogue for discrete time. The proof is the same, step-by-step:
we merely translate it into the language of finite-dimensional vectors and matrices.
The sets T and W become index sets and concentration is defined in terms of the
Euclidean norm on Rs. The Frobenius matrix norm (Golub and Van Loan [1983])
provides an analogue of the Hilbert-Schmidt norm for matrices. The resulting theorem
is more general than Theorem I because it does not require (x,) and ()w) to be perfectly
concentrated on T and W; however, the proof is not useful in identifying the extremal
functions of the inequality, which we show in Appendix A are simple spike trains. We
state this theorem without proof.
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THEOREM 3. Let ((x,), (w)) be a Fourier transform pair of unit norm, with (x,)
er-concentrated on the index set T and (w) e w-concentrated on the index set W. Let Nt
and Nw denote the number of elements of T and W, respectively. Then

(3.9) /MtNwN(1-(er+ew))2.

4. Recovering missing segments of a bandlimited signal. Often the uncertainty
principle is used to show that certain things are impossible, such as determining the
momentum and position of a particle simultaneously, or measuring the "instantaneous
frequency" of a signal. In this section and the next we present two examples where
the generalized uncertainty principle shows something unexpected is possible;
specifically, the recovery of a signal or image despite significant amounts of missing
information.

The following example is prototypical. A signal s(t) L2 is transmitted to a receiver
who knows that s(t) is bandlimited, meaning that s was synthesized using only
frequencies in a set W (which for our purposes may be an interval or any other
measurable set). Equivalently, Pws s, where Pw is the bandlimiting operator of the
previous section. Now suppose the receiver is unable to observe all of s; a certain
subset T (e.g., a collection of intervals) of t-values is unobserved. Moreover, the
observed signal is contaminated by observational noise n(t) L2. Thus the received
signal r(t) satisfies

s(t)+ n(t), T
(4.1) r(t)=

0, tT

where T is the complement of the set T, and we have assumed (without loss of
generality) that n 0 on T. Equivalently,

r:(I-PT)(s)+n

where I is the identity operator (If)(t)-f(t).
The receiver’s aim is to reconstruct the transmitted signal s from the noisy received

signal r. Although it may seem that information about s(t) for T is completely
unavailable, the uncertainty principle says recovery is possible provided ]TII W < 1.

To see that this is true intuitively, consider what could go wrong. If there were a
bandlimited function h completely concentrated on T, the measured data would show
no trace of h. The data would be the same, regardless of whether the true signal was
s(t) or s(t)+ ah(t), c R. Thus on the basis of the data and the knowledge that s is
bandlimited to W, we would have no way of discriminating between the competing
reconstructions So s and sl s+ ah. At the very least, our uncertainty about the
reconstruction would be IlSo-S, ll--IIs-(s/,,h)ll-I,,lllh[I, where I1 could be
arbitrarily large: our uncertainty would be completely unbounded.

However, Theorem 2 says that if IWIITI < 1, there is no such function h--there
is not even a bandlimited function "nearly" concentrated on T. This implies that s can
be stably reconstructed from r: there exists a linear operator Q and a constant C such
that

(4.2) s Qr c n

for all s, r, and n obeying (4.1).
THEOREM 4. If W and T are arbitrary measurable sets with TIIWI < 1, s can be

stably reconstructed from r. The coefficient C in (4.2) is not larger than (1 V’] T]] WI) -1.
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Proof Let Q=-(I-PTPw)-1. That Q exists follows from the fact that IIPT-PwI[
[[PwPT-[I--<,/lTIIWl 1 and the well-known argument that the linear operator I- L is
invertible if ILL[[ < 1. We also have

(4.3) 11(I- L)-’ _-<(1- LII)
Since (I Pr) s (I P-Pw)s for every bandlimited s,

s- Qr= s- Q(I- P.)s- Qn

s (I e-Pw)-l(I PTPw) s Qn

=0- Qn,

SO

by (4.3). [-I

The identity

Qr Qn

Q =- (I P-Pw)-I E (PPw)k

k=O

suggests an algorithm for computing Qr. Put s(’) =-,k=O (Ppw)kr; then s(’)- Qr as
n - c. Now

(o)
S --r

(4.4) s (1)= r+ PrPws()

s (2) r+ PTPws(1)

and so on. The iterate s (’) is the result of bandlimiting then timelimiting s (’-1), then
adding the result back to the original data r. The iterations converge at a geometric
rate to the fixed point

s* r + PTPws*

On T (the complement of the set T) where the data are observed, s(’)= r at each
iteration n, while on the unobserved set T the missing values are magically filled in
by a gradual adjustment, iteration after iteration.

The algorithm (4.4) is an instance of the alternating projection method" it alternately
applies the bandlimiting projector Pw and the timelimiting projector Pr. Algorithms
of this type have been applied to a host of problems in signal recovery (for beautiful
and illuminating applications see the papers of Landau and Miranker 1961 ], Gerchberg
[1974], and Papoulis [1975]; for a more abstract treatment, Youla [1978], Youla and
Webb [1982]; Schafer, Mersereau, and Richards [1981] give a nice review).

Note that the classical uncertainty principle, which requires both W and T to be
intervals, would help here only if W and the set T where data are missing were single
intervals.

5. Recovery of a, "sparse" wide-band signal from narrow-band measurements. In
several branches of applied science, instrumental limitations make the available
observations bandlimited, even though the phenomena of interest are definitely wide-
band. In astronomy, for example, diffraction causes bandlimiting of the underlying
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wide-band image, despite the fact that the image is a superposition of what are nearly
Dirac delta functions which, by the uncertainty principle, have extremely broad Fourier
transforms. The same is true in spectroscopy, where the image is itself a spectrum.

Although it may seem that accurate reconstruction of a wide-band signal from
noisy narrow-band data is impossible--"the out-of-band data were never measured,
so they are lost forever"--workers in a number of fields are trying to do exactly this.
They claim to be able to recover the missing frequency information using side informa-
tion about the signal to be reconstructed, such as its "sparse" character in the cases
mentioned. We first became aware of these efforts in seismic exploration (the interested
reader is referred to the papers of Levy and Fullagar 1981], Oldenburg, Scheuer, and
Levy [1983], Walker and Ulrych [1983], and Santosa and Symes [1986]), but later
found examples in other fields such as medical ultrasound (Papoulis and Chamzas
[1979]).

The discrete-time uncertainty principle suggests how sparsity helps in the recovery
of missing frequencies. Suppose that the discrete-time measurement (r,) is a noisy,
bandlimited version of the ideal signal (s,):

(5.1) r= PBs + n

where n (n,) denotes the noise and PB is the operator that limits the measurements
to the passband B of the system. Here we let P be the ideal bandpass operator

1
(5.2) Ps - _. gw e2w’/ rv.
If we take discrete Fourier transforms, (5.1) becomes

wB,
(5.3) r*w

0 otherwise

where we have assumed (without loss of generality) that the noise n is also bandlimited.
Let W denote the set of unobserved frequencies W-= B, and let Nw denote its

cardinality. Equation (5.3) represents a frequency-domain missing data problem
analogous to the time-domain missing data problem of 4.

It may seem that the problem is hopeless. After all, as (5.3) shows, the data
(w" w W) are not observed. Even if there were no noise, we might be skeptical that
anything could be done. Enter the uncertainty principle.

THEOREM 5. Suppose there is no noise in (5.1), so that r Ps. If it is known that
s has only N, nonzero elements, and if
(5.4) 2N,N.,<N,

then s can be uniquely reconstructed from r.
To prove this, we first show that s is the unique sequence satisfying (5.4) that can

generate the given data r. Suppose that sl also generates r, so PBsl r= Pns. Put
h Sl- s, so that Ph 0. Now s also has fewer than N, nonzero elements, so h has
fewer than N’, 2N, nonzero elements; because Ph =0, its Fourier transform has at
most Nw nonzero elements. Then h must be zero, for otherwise it would violate Theorem

(since N’,Nw < N). Thus s s, establishing uniqueness.
To reconstruct s from r, we could use a "closest point" algorithm: let be the

sequence minimizing I]r-Ps’[] among all sequences s’ with N, or fewer nonzero
elements. From the last paragraph, we know that s.

An algorithm for obtaining is combinatorial in character. Let N, be given and
let H denote the (N,) subsets z of {0,-.., N-1} having N, elements. For a given
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subset r H let be the sequence supported on z that comes closest to generating
the data r, i.e., the solution to the least squares problem

min {ll r PBS’II" ps’ s’}.

Then g go for some Zo H; we merely have to find which"

arg min r PB I[.

NThis algorithm requires solving (N,) sets of linear least-squares problems, each one
requiring O(N3,) operations, so it is totally impractical for large N. A much better
approach will emerge in 6.3. For its justification, we will need yet another uncertainty
principle.

Theorem 5 establishes uniqueness; can one establish stability in the presence of
noise ? Although an operator for sparse reconstruction will be nonlinear, the uncertainty
principle allows us to show that under some conditions sparse reconstruction is stable,
magnifying the noise by at most a constant factor.

THEOREM 6. Suppose s has at most N, nonzero elements, with 2N,Nw < N as before.
Assume that the norm ofthe noise n =< e. If has at most N, nonzero elements and satisfies

then

’1
2N,Nw

s ll 2e
N

Proof Let T denote the (unknown) support of s-; the cardinality of T is at
most N’,---2N,. Denote by Pr the operator that timelimits a sequence to T. We have

(5.6) Ils gl[= P,(s g)[I + [1(I- PB)(s )[I .
By the triangle inequality, the hypothesis that [[nl] _-< e, and (5.5), we have

(5.7) IIP.(s g)ll 2 -< 4e 2.

Let Pw I-P bandlimit to the unobserved band W. The second term on the right
of (5.6) thus is

Pw s ) PwPr s )

(5.8) <-_ IlPwP-[[2[[s- ll
2N,Nw

by Theorem 3. Combining (5.6)-(5.8) and solving for IIs-11 =, we obtain

ils_,l=__< 4e2/(1 2NNw)
The bound 2NNw < N is rather disappointing. It demands an extreme degree of

sparsity: even if only 10% of the frequencies are missing, it requires that s contain no
more than five nonzero entries in the time domain. Can we have uniqueness and
stability if 2NtNw >- N? The necessary condition is of the form IIPwPr[I < c < 1, where
T is a set of 2N, sites, Nt of which are the support of the signal s to be recovered,
and the other N, of which are arbitrary. Theorem 3 (or more precisely, its proof) shows
that IIPwPrll can be bounded in this way if 2N,Nw < N, but the bound is not sharp.
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In 7.2 we will consider the sharpness of the discrete uncertainty principle and
come to the conclusion that the condition 2N,Nw < N may be relaxed if the locations
of the nonzero entries in s are known to be widely scattered. On the other hand, if
the entries are close together, (5.4) is essentially the best one can do.

6. An L uncertainty principle and applications.
6.1. The L principle. For signal reconstruction problems such as those of 4

and 5, it is also useful to have uncertainty principles for the L-norm. The results are
not as neat as the L results, but they have quite remarkable applications.

The L-norm of the function f is, of course, Ilfll, If(t)l dt; we also will need
the L-norm Ilfll -= ess sup, If(t)l. As before., we say that f is e-concentrated to T-if
[If-PT-f[[ < e. Let B(W) denote the set of functions f L that are bandlimited to
W. We say that f is e-bandlimited to W if there is a g B(W) with IIf- g[l < e. With
this equipment, the statement of the theorem is as expected. except for a factor
(l+e) -1.

THEOREM 7. Letfbe ofunit L-norm. Iffis eT-concentrated to Tand ew-bandlimited
to W, then

1--eT--ew(6.1) IwIITI >
l+ew

We will prove the theorem in two steps, first assuming that ew 0. If ew 0 then

f B(W). By hypothesis,

Ilnfll, __> 1 eT.

Define the operator norm

(6.2) /Xo( W, T) sup
y,(w) [If Ill

(the analogue for L2 is just the operator norm IlPT-Pvcll of (3.7)); then

/Zo( W, T) >_- 1 er.

The desired result then follows from Lemma 3.
LEMMA 3. /-0( W, T) <=IWIITI.
Proof For f B(W) we have

f(t) f eZiw’f(w) dw
w

:fwf_e2riw(t-s)f(s)dsdw

so that

[f(t)]<- f lf(s)] f l dwds
w

or

(6.3) f <- Wl f II1.
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On the other hand,

(6.4)
dT

Combining (6.3) and (6.4), we have forf B(W)

Now suppose that ew 0. If f is ew-bandlimited, by definition there is a g in
BI(W) with IIg-fll-<- w. For this g, we have

Pg --> Pf - P(g-f)

and also

so that

Prg Ill > Prf II1 ew> 1 ew ew

Thus tzo(W,T)>=(1-er-ew)/(l+ew); this combined with Lemma 3 proves
Theorem 7.

6.2. Logan’s phenomenon. Consider the following continuous-time signal recon-
struction problem. The bandlimited signal s is transmitted to the receiver who measures
s perfectly except on a set T, where the signal has been distorted by a noise n. The set
T is unknown to the receiver, and the noise is arbitrary except that n I1 < . in short,
the received signal r satisfies

r= s + Pwn.
The aim is to reconstruct s.

The method to be used is L-reconstruction, letting g be the closest bandlimited
function to r in the L-norm

g= arg min [lr- s’lll.
s’eBl(W)

We might suppose that reconstruction is difficult if n is very large" we have not
constrained Ilnll. Enter the uncertainty principle, again.

THEOREM 8. If WIITI < , the L method recovers perfectly" s, whatever be n.
To see why this is true, consider the special case where s 0. Thus r n. Theorem

8 requires that the best bandlimited approximation to r be zero.
Here is where the uncertainty principle acts.. As WT[ <}, every bandlimited

function gB(W)is less than 50% concentrated on T: IIPglll<511gll,, and so
Pg I1 < Pg II where U T and Pv I Pr.

This will imply that the best bandlimited approximation to n is zero. Indeed, if
gB(W) andg#0,

IIn-gll, IIP(n- g)lll + Pgll
(6.5)

We have just proved Lemma 4.
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LEMMA 4. Let lWJJT <1/2. If n vanishes outside of T, then its best bandlimited
approximation from B(W) is zero.

The role of the L uncertainty principle in this lemma should be emphasized" it
says that because no bandlimited function is as much as 50% concentrated to T, any
effort to approximate n well on T incurs such a penalty on T that we do better not
to try.

To prove Theorem 8, suppose that s 0, and let g B(W).

We want to minimize this expression over all g B(W). Now (s-g) is bandlimited;
the lemma says that this expression is minimized if (s- g)= 0. It follows that g s.

This rather striking phenomenon first appeared in Logan’s thesis 1965]. He proved
the theorem for the case where W [-/2, /2], without explicitly noting the connec-
tion to the uncertainty principle. We think our proof makes the result rather intuitive.

We might call this result "Logan’s Certainty Principle," as it says that s can be
reconstructed with certainty when the set T where s is corrupted is smaller than some
critical threshold value. Logan envisions applying this result to the problem of smooth-
ing away high-energy impulsive noise. By using the L technique, the effect of such
noise can be entirely removed, provided the total duration of the noise bursts is short.
In our view, this is a powerful, novel property of L methods in signal processing. For
example, L2 methods lack this property because (6.5) does not hold for the L2 norm.

The crucial and surprising thing here is that T is unknown and may be totally
arbitrary (provided IT[ is small), and n may be arbitrary as well. In contrast the
application in 4 required that T be known and that n be small.

6.3. The sparse spike train phenomenon. Theorem 7 has an analogue for discrete
time in much the same way Theorem 2 has Theorem 3. There is also a discrete-time
version of the "Certainty" phenomenon.

To apply these, return to the sparse signal reconstruction problem of 5. We
observe r, a bandlimited version of s; assuming no noise is present, r PBs, where PB
is the ideal bandlimiter of (5.2). Here B is the system passband and W B is the set
of unobserved frequencies.

We saw in 5 that provided s is sparse with 2N,Nw < N, we can recover s from
r. However, the combinatorial algorithm we proposed is unnatural and impractical.
Consider instead an /-reconstruction algorithm. The /-norm of (x,) is defined to

N-1
be [[xl[ Y,=o [x,[. Let be the signal with smallest/-norm generating the observed
data r"

(6.6) g= arg !n IIs’l]l subject to P,s’= r.

This estimate may be conveniently obtained by linear programming (e.g., see Levy and
Fullagar [1981], Oldenberg, Scheuer and Levy [1983], or Santosa and Symes [1986]).

NIn practice it requires O(NN, log N) time as compared with O((N,) N,) time for the
combinatorial approach. As the cited papers show, the method also has an elegant
extension to the case where noise is present. The uncertainty principle shows that the
method recovers s in the noiseless case.

THEOREM 9. If 2N,Nw < N, then

exactly.
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The proof is an application of Logan’s phenomenon. First, note that by (6.6),
PB PBs, so s + h where Ph 0. Thus h is bandlimited to W B’. On the other
hand, s is sparse--it differs from the sequence (0,...,0) in only N, places. As
2N,Nw < N, the discrete Logan phenomenon implies that the best/1-approximation to
s by sequences bandlimited to W is just the zero sequence. In other words,

arg min IIs + II, 0,
hB(W)

or

arg rn,!n {11 s’ II" Ps’ Ps} s

Instances of this phenomenon were demonstrated empirically by geophysicists in
the early 1980s. A formal theorem and proof were discovered by Santosa and Symes
[1986], who actually mention the uncertainty principle in passing during their proof.
(They do not, however, mention exactly which uncertainty principle they are using
nor indicate why it is intrinsic to the result.) We think the connection with Logan’s
phenomenon and with the /1-uncertainty principle are enlightening here.

7. Sharpness.
7.1. Sharpness of the continuous-time uncertainty principle. Is there a converse to

Theorem 2? If T and W are sets with [T[[W[ > 1 will there exist a pair (f, f) with f
practically concentrated on T and f practically concentrated on W? This is a difficult
question. If T is an interval and W is an interval, the answer is yes (although the
quantification of "practically" given by the uncertainty principle is not always sharp--
see Table 1). Otherwise, little is known.

As we saw in (3.4), the existence of such a pair is equivalent to

Define ,o( W, T)= I1PwPr ][2. The work of Slepian, Landau, and Poak provides a great
deal of insight into the behavior of Ao when W and T are single intervals (Slepian
and Pollak [1961]; Landau and Pollak [1961]). They show that in this case Ao is the
largest eigenvalue of the operator PwPrPw; and they give a complete eigenanalysis of
this operator, identifying its eigenfunctions as the prolate spheroidal wavefunctions.
They also show that Ao( W, T) is a function of e 7r/2] W][T] alone; call this function
,o*(e). Slepian and Pollak [1961] give the results presented in Table 1, where we have
added a column to compare the generalized uncertainty principle. For e 7r/2 the
approximation (1) of Slepian and Sonnenblick [1965] yields Ao(C) 0.73; the bound
of one from Theorem 2 is off by nearly 37%. Although perfect concentration is

TABLE
PwPT ]2 given by prolatesfor W, T intervals, and

bound from Theorem 2 for c 7r/2] W IT.

Bound on IIPwPTI
c A (c) from Theorem 2

0.5 0.30969 0.31830
0.57258 0.63662

2 0.88056 1.0
4 0.99589 1.0
8 1.0 1.0
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impossible when W and T are intervals, by the time IW[IT[ 3.82, the required sum
of ew and er is less than 0.0001. For small [WILT[, Slepian and Sonnenblick’s
approximation shows that the uncertainty principle is sharp to first order in [WILTI.

For general sets T and W, however, the uncertainty principle can be far from
sharp. In particular, if T is the union of very many very "thin" intervals, then it can
be extremely hard to concentrate a bandlimited function on T, even if IT[ is quite large.

THEOREM 10. Let W be an interval. Let T be a union of n equal width intervals.
Let the minimum separation between subintervals of T tend to co; then

(7.1) PcP - ,X*o(/21WllYl),
As

WIIT[,) < WIITIo* . .
the right-hand side of (7.1) can be small if n is large. The theorem says that for W an
interval, there are sets T where IWI TI 1 but Ao(W, T) is arbitrarily small. It also
shows that there are sets 7" where Ao( W, 7")=< but W[[TI is arbitrarily large. In these
cases T is a union of many "thin" intervals.

Proof Recall that

Ileell sup .
l:i= Ilfll

Denote the n intervals of length TII n that comprise T by , 1, , n. Any f such
that f Pf can be written i f, where the suppo off is T. Let P, timelimit to T.
Note that (f,)= 0, @j, where ( g) is the inner product on L2, fg dr. Let A denote
the minimum spacing between the Z:

A min {It- ts]: t Z and ts }.
i#j

IIP(E,f,)ll <E, Pwf, Zj Pwf>(7.2) IIPwPll= sup sup
,’.., ll2if, :"-r/,

, I1
by the linearity of P and the orthogonality of the . We are free to normalize so tkat
IlSll= E, II/11= . ow

i,j

(7.3)
N nwf ]]z + [(nwf, nw}].

Examine the rightmost term of (7.3)"

(7.4) l(nwf, nw)] n(n 1) max ](f, nw)l,
ji i,j" ij

which uses the facts that Pw is self-adjoint and P Pw. Now

I<, >] (t)
sin w(t- ,)
(t- r) (r) dr dt

IS(t)l IX()I
sin w(-) a
(t-)

We have
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(7.5)

1
dz dt

[If,[[ I1[I sup
Ti,’r T

--< IIf/ll
_<_ (r/x)-’

since [Ifll- . For the first term on the right of (7.3), we have

(7.6) E IIPfll:_<max
2i Iif’112 IIf/

which follows from H61der’s inequality. Combining (7.2)-(7.6), we find

IIP.PII =< sup max
IIPf/II

ill,ii-----c- / n(n 1)(Tra)-’,

since the optimization problem on the right yields the eigenvalue associated with the
zero-order prolate spheroidal wavefunction (Slepian and Pollak [1961]). Theorem 10
follows in the limit A oe.

Theorem 10 is the best of its kind, in a certain sense. If T is the union of n intervals
T, it is easy to see that

ao( W, T) _-> max ao( W, T)

Thus the right side of (7.1) is always a lower bound for the left side; the theorem says
that it may almost be attained.

Comparing the theorem with Table 1, we get the impression that when W is an
interval, if we vary T keeping IT] fixed, A0(W, T) would be largest when T is an
interval and smallest when T is "fractured" into many thin sets. Thus intervals would
be the easiest sets to concentrate on, and "thin sets" would be the hardest. This leads
to the following conjecture.

CONJECTURE 1. max IIPPII, where W is an interval and T ranges over measurable
sets with TIIWI C, is attained when both W and T are intervals.

Daubechies has shown us a perturbation theory argument that implies the conjec-
ture is true "infinitesimally"that IIPwPr]] decreases as T is perturbed away from an
interval to a union of intervals having the same total measure but with small gaps
between the intervals. She also has suggested that the conjecture might be tackled via
symmetric rearrangements; using that approach we prove Conjecture 1 for the case
WIIT[ <- 0.8 in a sequel (Donoho and Stark [1988]).

The fact that IIPwPr]l << W]lTI when T is fractured has positive applications to
the problem of 4. What we really proved in Theorem 4 was that provided PwPr < 1,
s could be stably reconstructed from r with stability coefficient (1-1]PwPrl])-. In
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view of Theorem 10 we can see that if W is an interval, we can have PwPT arbitrarily
close to zero with IWIIT arbitrarily large. Consequently, when the set T is "thin
enough," s can be stably reconstructed from r even though IWIITI >> 1, and in fact
with a stability coefficient close to one.

7.2. Sharpness of the discrete-time principle. When N is a highly composite num-
ber, the periodic spike train examples of 2 show that many pairs ((x,), (w)) attain
equality N,Nw N. In this sense, the discrete-time principle is sharp. On the other
hand, Appendix A shows that the index sets T and W where the bound is attained
are all highly regular (equispaced). For arbitrary index sets T and W with N,Nw >-_ N
it could be that no sequences exist that are perfectly concentrated to T in the time
domain and to W in the frequency domain.

Defining PT and Pv for discrete-time signals in the obvious way, it turns out that
just as in the continuous time case, there exist transform pairs ((x,), (w)) with (x,)
e--concentrated to T and () ew-concentrated to W if and only if [[P-Pvll>=

er ew. Thus defining Ao I]PwPTII 2, the uncertainty principle (3.8) is nearly sharp
if for the sets T and W of interest, we have

(7.7)
N,Nw

>1 and Ao(W,T)I.
N

For W and T intervals,

T= {to,’’’, to+ N,- 1}, W= {Wo,’’’, Wo+ Nw- 1},

we have found that Ao(W, T) is very close to one when N,Nw/N->_ 1. In the discrete
case, Ao( W, T) is just the square-root of the largest eigenvalue of the matrix PwPrPw,
and can be computed numerically. Table 2 presents results for the cases N 64, 96,
128, 192, 256, with (N,, Nw) chosen so that N, Nw and N,Nw/N 1, 2, or 3. Thus
it is rather easy to concentrate on the pairs of sets (T, W) when T and W are both
intervals. It appears that the discrete principle is sharper for intervals than is the
continuous-time result.

TABLE 2

Ao as a function of N,N,,./ N; W and T intervals.

N,,.N, N
Ao for N

64 96 128 192

0.834 0.843 0.760 0.823
0.986 0.977 0.975 0.975
0.999 0.999 0.998 0.999

On the other hand, if W is an interval and T is allowed to range over sets that
are not intervals, it can be quite difficult to concentrate on (T, W). Our examples
concern the case where W comprises the low frequencies {0, 1,..., N-I} and T
consists of equally-spaced sites. The basic tool here is Theorem 11.

THEOREM 11. Let M>- divide N. Let W= {0, , M- 1} and T=
{0, N/M, 2N/M,..., (M- 1)N/M}. Then Nw N, M and

M
ho( W, T) < 1,
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yet

N,Nw M2

Proof

Ao( w, T) PwPT sup
which gives, in analogy to (3.8),

(7.8)

sup
,<,:o.,.,,,il !111

M-1

sup N=,,. ,=o,,+. i,t Z Ix,
by Parseval’s relation Inserting the definition of :w and restricting the sums over to
the set where x, 0, we find

.=o
x,./ exp -2iw’r N

Let yRM’y-=X.N/M, ’=0,"" ", M-1. Then we have

M M-1

Zo(W, T)=- su.p y
yR =1

1 M-1

y exp (-2rriw’/M)
V IV1 ’=0

M
N

Theorem 11 can be used to construct counterexamples to (7.7) where Ao< c < 1 but
N,Nw/N is arbitrarily large, and examples where NtNw/N 1 but Ao is arbitrarily small"

COROLLARY 2. Let N be even. Let W consist of the N/2 lowest frequencies and let
T be the even numbers {0, 2,..., N-2}. Then o( W, T)= , but

NwNt N
N 4

COROLLARY 3. Let N be a perfect square. Let W consist of the low frequencies
and let T be a set of equispaced points with spacing v/--. Then NtNw/N 1, but

Ao( W, T) N-112.
In short, the uncertainty principle can be arbitrarily "nonsharp" in this case.
These examples are the best of their kind. The largest eigenvalue of a nonnegative-

definite matrix is at least the trace divided by the number of nonzero eigenvalues, so

trace (PwPrPw)
Ao( W, T) >=

rank (PwP-rPw)

NwN, 1

S min (Nw, N)

max Nw, N,)
N

The fact that trace (PwPrPw)= NwN,/N is the discrete-time analogue of Lemma 2.
In Theorem 11 and its two corollaries, this lower bound is attained.
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The discrete-time case seems to have some interesting structure. Suppose N,Nw
N. If W is an equispaced set then if T is also equispaced, concentration is maximal"
o( W, T)= 1 (by the Appendix). If W is still equispaced but now T is an interval, the
concentration is minimal (by the previous paragraph). On the other hand, if W is an
interval the situation is the reverse" T equispaced minimizes the concentration (by the
last paragraph), while T an interval seems to maximize it. Numerical experiments
support the following conjecture.

CONJECTURE 2. If W is an interval and NwN, N, then [IPwPTII is maximized
among all sets T offixed cardinality N, when T is also an interval.

If the conjecture is true, intervals and equispaced sets play completely dual roles.

7.3. Lack of sharpness when T is ’random." The lack of sharpness when W is an
interval and T is scattered has positive applications to the signal recovery problem of

5. As we saw there, the uncertainty principle suggests that recovery of a sparse
sequence from data missing low frequencies would place severe restrictions on the
number of spikes in the sequence. However, we have just seen that the uncertainty
principle may be far from sharp, so for some sets T, NwN may be much larger than
N without admitting highly concentrated sequences. By an argument we will not repeat
here, this suggests recovery is possible. Unfortunately, the examples so far have T
equispaced; such perfect spacing is not plausible in practical signal recovery problems.

A more realistic situation is when W consists ofthe low frequencies {0, , Nw }
and T is a set of sites chosen at random (i.e., by drawing Nt integers from a "hat"
containing {0, , N- 1}). We have investigated this setup on the computer, the results
suggest that randomly-selected and equispaced sets T behave similarly.

In our investigation we used several different sequence lengths N" 64, 128, and
256. For each sequence length N, we let Nw and N range systematically between eight
and ?0, and two and 50, respectively. For each choice of Nw and N, we let W=
{0,. , Nw- l} and we randomly generated 20 sets T with N elements. We computed
&o(W, T) for each of the 20 cases; averaging across these we arrived at

Xo(Nw, N,, N) Ave {o( W, T)}.

In all, we examined more than 30,000 combinations of sets T and W.
Figure 1 shows Xo(Nw, N,, N) versus NwN,/N. The different symbols are for

different length sequences" the dots are results for signals of length 64, the circles are
for length 128, and the plusses are for sequences with 256 elements. The plot shows
that even with NNw =SN, quite often ho<0.8: there is no pair ((x,), (w)) that is
simultaneously concentrated on W and T, even though the product of their cardinalities
is large compared to N. This situation grows more pronounced with N" on the average,
Theorem 1 is less and less sharp for larger and larger N, when W is an interval and
T is a random set. This leads us to Conjecture 3.

CONJECTURE 3. Let W be the interval containing the lowest Nw frequencies and let
T be a randomly selected set of Nt sites. Suppose c NtNw/N and a N/Nw are held
fixed as N o. Then

E(,Xo)- 0

where E (Ao) denotes the expectation of Ao under random selection of the sites in T.
Results such as this, if true, would suggest that in the problem of 5, it may be

possible to recover many, many times more spikes than (5.4) indicatesif the spike
positions are scattered "at random." If all are together in one interval, however, our
uncertainty principle is nearly sharp. Thus those who claim that "sparsity" allows
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FIG 1. N 64; O N 128; + N 256.

reconstruction of wide-band signals from narrow-band data should say that "scattered-
ness" is needed also (unless truly extreme sparsity is present).

8. Discussion.
(A) The uncertainty principle "without epsilons" has several precedents. Suppose

W and T are both contained in bounded intervals of R. Then, by a classical argument,
there is no nonzero function f perfe,ctly concentrated to T in the time domain and W
in the frequency domain. Indeed if f vanishes outside a bounded interval then f is an
entire function. As T contains an interval, f vanishes on an interval and so is zero.
Matolcsi and Sziics [1973] have proved that if W and T are any subsets of R and if
]WILT < 1, then there is no function perfectly concentrated to T in the time domain
and to W in the frequency domain. Amrein and Berthier 1977] and Benedicks 1985]
have obtained this conclusion just under the assumption that W and T are subsets of
finite measure. From a signal recovery point of view, these results say that for certain
partially observed noiseless signals, unique recovery is possible, for example, by a
process of analytic continuation. They do not, however, say what happens when noise
is present.

A point of entry to the literature on the Heisenberg-Paiuli-Weyl uncertainty
principle is Cowling and Price [1984].

(B) The uncertainty principle "with epsilons" is closely related to work of Fuchs,
Slepian, Landau, Pollak, and Widom. Fuchs 1954] was apparently the first to consider
the norm l]PwPr]l where W and T are arbitrary sets of finite measure. Define

ao( W, T) PwPT .
Fuchs indicated some uses for ,/, including its relation to the uncertainty principle.
However, Fuchs [1954] does not contain the key inequality

(S. Ao( W, T) --< wl TI,
which we establish here via our Lemma 2; this, together with this Theorem 1, would
have established our Theorem 2.
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In much of the work of Slepian, Landau, and Pollak, the sets T and W are
restricted to be intervals, so the uncertainty principle they consider is the classical one.
They show that Ao is the largest eigenvalue of a certain integral operator and explicitly
determine the corresponding eigenfunction, one of the prolate spheroidal wavefunc-
tions. However, Landau and Widom [1980] consider the case where W and T are
unions of disjoint intervals; they compute explicitly

(8.2) trace PrPwPr W] TI.
If we use the identity

PwPr s trace PrPwPr
(since Pv Pw and both Pr and Pw are self-adjoint), this gives our Lemma 2. Although
Landau and Widom make no connection between (8.2) and a result like Theorem 2,
no doubt if asked they could have proved it effortlessly. Nonetheless, Theorem 2 does
not seem to appear anywhere. We believe our real contribution is to show the sig-
nificance of the result for signal recovery problems.

(C) We can generalize Theorems and 2 to other integral transforms. Katznelson
and Diaconis, after reading an earlier draft, suggested that an uncertainty principle
like Theorem 2 ought to hold for arbitrary transformations f-f satisfying merely

(a) Ilfl]2 I[f[12 (a Parseval-type identity), and
(b) Ilfll<_-

We have been able to give such a result; it involves the use of Ll-Concentration in one
domain and L2-concentration in the other.

THEOREM 12. Supposef f is a transformation ofL L2 into L2(’I L with proper-
ties (a) and (b). Suppose there is a transform pair (f f) of unit L2-norm with f
er-concentrated to T in Ll-norm and f ew-concentrated to W in L2-norm. Then

)2.WilT[ (1 e2w)(1 er

The proof takes only a few lines"

w

The first inequality follows from eve-concentration of f Now,

[[[Im <- ]If Ill (1- 8r) -1 fT
where the last inequality follows from er-concentration off By the Cauchy-Schwarz
inequality,

Combining these inequalities,

Ifl<=llfll.
T

[Ifll (1 e2w)-l(1 er)-2[ WIlT IIf[12,
from which the theorem follows.

It seems interesting that the result is "mixed," involving both L2 and L norms.
We wonder if a result using L2-measures for both frequency and time concentration
can be constructed this easily.
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The proof is quite general and may be used in other situations. For example, the
same reasoning applies if the index set in the transform domain is discrete; thus the
proof says something about orthogonal series. Let {4k} be an orthonormal basis for
L2[0 1], let fk=f(t)--(t) dt be the kth Fourier-Bessel coefficient off, and let (j)
denote the sequence of Fourier-Bessel coefficients. Let now IIj[12, IIjlll, and
denote the 12, 11, and l norms of the sequence (j), let W denote a subset of {1, 2, .},
and let W] denote counting measure ( W). Because the qS are orthonormal, condition
(a) holds for f in the L-span of {b}; if ]l(hl[<- 1 the condition (b) holds as well.
With this change in symbolism the same proof establishes Corollary 4.

COROLLARY 4. Let {4k} be an orthonormal set with ]14]1_-< for all k. Let f be
of unit L2-norm and belong to the Lz-span of {qS}. Iff is eT--concentrated to Tc[0, 1]
(in L-norrn) and if the sequence () is eve-concentrated to W {1, 2,...} (in 12-norrn)
then

(8.3) TI Wl >= (1 er)(1 eZw).
This result is now doubly "mixed" in that one domain has a continuous index

set, the other is discrete, whereas the measure of concentration in one domain is an

Ll-norm while that in the other domain is an /-norm.
The special case e-= eve=O of this result is worth mentioning. Let support

f { t" f(t) 0}, and let support j { k" j 0}. Then (8.3) implies

(8.4) [support/[. [support f]->_ 1.

(Here [support fl :{k: fk 0}.) This can also be proved directly as follows.

Ilfll =< (llfll)Z[supportfl,
Ilfll sup ] fkChk(t)l

(8.5)

(8.6) --<x/2 Ifl2" x/#{k" f
where (8.5) follows from 114]1_-< 1, and (8.6) from Cauchy-Schwarz. Because 4 are
orthonormal, Bessel’s inequality 2 ILl =< lf] gives

]]f]l =< Isupport/] ]support f] ]lf]]22,
which establishes (8.4).

Let bk be the kth Rademacher function (4(t)= 1 if the kth bit of in binary
representation equals one; b(t) -1 otherwise); the {b} are then bounded in absolute
value by one and are orthonormal on the interval [0, 1]. The functions

f -40 (--1)
and

f2=-4o+.4 (--2 on (1/2, 1); 0, otherwise)

supply two examples where equality obtains in (8.4).
As it turns out, a more useful result would assume that ]]4k ]]----< M for all k. The

last proof of (8.4) then shows immediately that the correct result in this case is

Isupport f] ]support ft--> M--5-
We also remark that an argument similar to the proof of (8.4) provides an alternative
proof of Theorem (NtNw N). However, such a proof does not seem to provide
direct insight into the nature of the extremal functions.
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There are other directions of generalization as well. Diaconis and Shashahani
have pointed out to us that an uncertainty principle holds in noncommutative harmonic
analysis. Let G be a compact group. Let f be a function on G, and let fp be the
(matrix-valued) coefficient of f with respect to the unitary representation p, via

f,---(- f(g)fi(g) ag.

Here [G[ is the measure of G (i.e., one for a continuous group or the cardinality of
G for a discrete group). Then Diaconis and Shashahani prove that

(8.7) Isupportf](* dim p) --> IGI
where the sum ranges over irreducible representations of G with f, # 0. When G is
continuous, so that ]G]= 1, this inequality is similar to (8.4), in that * dimZp is
counting the number of nonzero coefficients in the expansion off (recall that p(g) is
a dim p by dim p matrix). When G is the group of integers modulo N, this inequality,
sensibly interpreted, implies NN N. The proof of (8.7), which uses a number of
facts about Haar measure and irreducible representations, is not much longer than our
proof of (8.4) and (except for terminology) has a similar flavor to the proof of (8.4).
It appears that (8.7) was first established by Matolsci and Szfics [1973] by an abstract
operator-theoretic argument.

The uncertainty principle "with epsilons" has been generalized to locally compact
groups by Smith [1988]. Smith gets results not just for L norms but also for L,
lp<.

(D) Benedicks [1985] makes the following interesting observation. While the
uncertainty principle is true with a great deal of generality, it becomes false if we try
to extend its scope to locally finite measures. For example, let 6, denote the Dirac
delta measure 6,(S)= {1, if S; 0, otherwise}. Then fix h >0 and put

This measure can be viewed as an infinite train of equally-spaced spikes. Formally,
the Fourier transform of v is

= 6/.

This is the Fourier transform of v in a distributional sense: the Parseval relation

holds for every infinitely differentiable test function of compact suppo (see Katznel-
son [1976] for the Fourier theory of locally finite measures). The pair (, ) furnish a

counterexample" to our uncertainty principle since is supported on a set of zero
measure, as is . Therefore

Isupport Pl Isupport 1 0 < 1.

On the other hand, if we take a sequence of smooth test functions (f.) converging in
the distributional sense to p (i.e.,
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for every test function g,) then each of these functions f, will satisfy the uncertainty
principle (by Theorem 2).

9. Conclusion. We have proved several uncertainty principles in which the sets
of concentration need not be intervals. For L2 concentration on intervals, the new
result is not as sharp as the classical result of Landau, Pollak, and Slepian. The general
principles are easy to prove and have applications in signal recovery, including: analysis
of linear recovery problems ( 4) and nonlinear ones ( 6.2); establishing uniqueness
of recovery when no noise is present ( 5) and stability when noise is present ( 4);
establishing that a computationally effective approach to a recovery problem is available
( 6.3). In all these applications, the basic uncertainty principles (N,Nw >- N;[W]]T] >-
1- 6) establish that something is possible, but generally much more is possible than
these simple inequalities indicate. Better practical results will require seeing how
operator norms such as []PrPw]] depend in detail on the sets T and W.

The basic principles also have generalizations to orthogonal series and to harmonic
analysis on groups. Perhaps interesting applications of these principles will also be
found.

Appendix A. Extremal functions of the discrete-time principle.
THEOREM 13. Equality N,Nw N is only attained by III N, and sequences (x,)

reducible to it by the following"
(a) Scalar multiplication;
(b) Cyclic permutation in the time domain;
(c) Cyclic permutation in the frequency domain, so that

N(A1) (X(t-’r) mod N) alII()"-,o)mod N

for some a O, and some integers " and oo. Equivalently,

X(t-’r) mod N O e2"rit/ N III N,.

Proof We know that III N, satisfies the equality; by inspection sequences (x,) that
can be written as in (A1) do also. In the proof of Theorem 1 we showed that equality
is only possible if we have the following:

(1) N is composite with the factorization N- N,Nw (obviously); and
(2) The Nw nonzero elements of w are equally spaced.

To these we may add the following:
(3) The N, nonzero elements of x, are equally spaced.

The argument for (3) is similar to the argument given for (2). In Lemma 5 (below) we
give a result reciprocal to Lemma 1, showing that no Nw consecutive entries of x, can
all vanish. But since x, has only N,--NNw nonzero elements, they must be equally
spaced to avoid a gap more than N long.

Let us now see how (1)-(3) imply (A1). Let (y,) be a cyclic permutation of (x,),
i.e., y,= X,-)moN, with y0#0. Henceforth, let k= N,, l= Nw. By (3), (y,) has the
same support as III. It can therefore be written as the pointwise product

Yt III k
et

where (e,) is an "envelope" sequence. The transform (33w) is the circular convolution
of the transforms IIk kN-/-III and ’:

N-1 k
fiw IIIj --j) mod N.

0
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Now the convolution of the periodic sequence III with any other sequence yields a
periodic sequence with the same period. Thus (fiw) has Nw NN, periods of length
N,; to attain equality N,Nw N it must have only one nonzero value in each period.
By periodicity all the N, nonzero entries in )3w are identical and equally spaced. Thus
for appropriate a, w,

fw a IIIlw_o mod N"

In terms of the original sequence x,,

(X(t-’r) mod N) cIIIlw--,) moo n.

To show that the extremal functions in both the time and frequency domains are
equally-spaced spike trains, we used the following lemma in addition to Lemma 1.

LEMMA 5. If (w) has Nw nonzero elements, then x, cannot vanish on any interval
of Nw consecutive times t.

The proof of Lemma 5 is identical to that of Lemma after interchanging the
roles of x and , replacing N by Nw, and replacing z by z-.
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