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1. Pattern discrimination

From the plot below, it is obvious that there exists no linear setting of the weights (in
the given space) for which the two classes are linearly separable. Thus, no weight setting
of the McCulloch-Pitt’s neuron will discriminate the two classes without error. It would
seem that if we applied a non-linear transformation to the data we could get to a more
separable space. Note, that typically projecting data from a lower dimension ( two in this
case) to a higher dimension (five or higher, say) usually leads to much better separability.
This is commonly known as the kernel trick in machine learning. Some student solutions
had some interesting plots to explain this as well.
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Figure 1. This is the plot of the data. Any number of solutions exist
for the linear condition of the McCullogh-Pitt neuron. The above solution
shows one of the many possible solutions a McCullogh Pitt neuron could
arrive at. It is fine, if you got another solution as well.

There exist many different ways to solve this discrimination task. One obvious solution
can be to apply some non-linearity to the input samples. For e.g., if we took each value of
the the input and squared it
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2. Linear neuron with sigmoidal output non-linearity

The objective function for a McCullogh-Pitt neuron (in general) is given by

E =
1

2

∑
i

[Ti − σi]
2(1)

where σ is defined as

σ(u) =
1

1 + e−u

and u =
∑

iwixi
Taking the partial derivative of σ(u) with respect to wi gives us the following equation

using chain rule

∂σu
∂wi

=
1

1 + e−u

e−u

1 + e−u
xi(2)

The partial derivative of the Energy function with respect to σ(u) is given by

∂E

∂wi
= −2

N∑
i=1

(yi − σ(u))
∂σu
∂wi

(3)

Substituting the partial derivative of σ with respect to w we get the update rule as the
follows:

δwi = η
∑
i

(Ti − σi(u))σi(1 − σi)xi(4)

where η is the learning rate of the system.

3. Apples vs Oranges - Linear vs sigmoidal neurons

In this case, both solutions seemingly separate the two classes. You can observe that
the error for the non-linear neuron is more erratic for the first few iterations. A few notes,
this is obviously ”a” solution. Modifying the η values can easily change the convergence
time and error values. Further, if you modulate the value of η over time, you can often
avoid minima in the error energy function.
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Figure 2. The solution of a linear McCullogh-Pitt neuron



4 MAYUR MUDIGONDA

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

Error vs iterations

iterations

E
rr

o
r

Figure 3. The plot of error with respect to iterations in the linear case
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Figure 4. The solution of a non-linear McCullogh-Pitt neuron
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Figure 5. The plot of error with respect to iterations in the non-linear case


