Fritz Sommer: Difference between revisions
Line 16: | Line 16: | ||
== Recent Publications == | == Recent Publications == | ||
K. Koeppsell, X. Wang, Y. Wei, V. Vaingankar, J. A. Hirsch, F. T. Sommer: Dynamical coding opens a novel channel for visual information to reach cortex. (2006) submitted | |||
M. Rehn, F. T. Sommer: A network that uses few active neurons to code visual input predicts the diverse shapes of cortical receptive fields. (2006) submitted | M. Rehn, F. T. Sommer: A network that uses few active neurons to code visual input predicts the diverse shapes of cortical receptive fields. (2006) submitted | ||
Line 37: | Line 40: | ||
A. Knoblauch, F. T. Sommer: Spike-timing dependent plasticity can form "zero-lag" links for cortical oscillations. | A. Knoblauch, F. T. Sommer: Spike-timing dependent plasticity can form "zero-lag" links for cortical oscillations. | ||
Neurocomputing 52-54 (2004) 301 - 306 pdf | Neurocomputing 52-54 (2004) 301 - 306 [http://redwood.berkeley.edu/~fsommer/papers/KnoblauchSommer04.pdf pdf] | ||
M. Rehn, F. T. Sommer: A network for the rapid formation of binary sparse representations of sensory input. | M. Rehn, F. T. Sommer: A network for the rapid formation of binary sparse representations of sensory input. | ||
Line 43: | Line 46: | ||
G. Glatting, F. M. Mottaghy, J. Karitzky, A. Baune, F. T. Sommer, G. B. Landwehrmeyer, S. N. Reske: Improving binding potential analysis in [11C]raclopide PET studies using cluster analysis. | G. Glatting, F. M. Mottaghy, J. Karitzky, A. Baune, F. T. Sommer, G. B. Landwehrmeyer, S. N. Reske: Improving binding potential analysis in [11C]raclopide PET studies using cluster analysis. | ||
Medical Physics 31 (4) (2004) 902-906 | Medical Physics 31 (4) (2004) 902-906 [http://redwood.berkeley.edu/~fsommer/papers/glattingetal04.pdf pdf] | ||
J. A. Hirsch, L. M. Martinez, C. Pillai, J.-M. Alonso, Q. Wang, F. T. Sommer: Functionally distinct inhibitory neurons at the first stage of visual cortical processing. | J. A. Hirsch, L. M. Martinez, C. Pillai, J.-M. Alonso, Q. Wang, F. T. Sommer: Functionally distinct inhibitory neurons at the first stage of visual cortical processing. | ||
Nature Neuroscience 6 (12) (2003) 1300 - 1308 | Nature Neuroscience 6 (12) (2003) 1300 - 1308 [http://redwood.berkeley.edu/~fsommer/papers/hirschetal03.pdf pdf] | ||
F. T. Sommer, T. Wennekers: Models of distributed associative memory networks in the brain | F. T. Sommer, T. Wennekers: Models of distributed associative memory networks in the brain | ||
Theory in Biosciences (122) (2003) 70 - 86 | Theory in Biosciences (122) (2003) 70 - 86 [http://redwood.berkeley.edu/~fsommer/papers/wennekerssommer03.pdf pdf] | ||
Eds: F. T. Sommer, A. Wichert: Exploratory analysis and data modeling in functional neuroimaging | Eds: F. T. Sommer, A. Wichert: Exploratory analysis and data modeling in functional neuroimaging |
Revision as of 00:05, 15 February 2006
Redwood Center for Theoretical Neuroscience
Helen Wills Neuroscience Institute
132 Barker, MC #3190
Berkeley, CA 94720-3190
phone (510) 643-4010
efax (413) 618-4731
<fsommer at berkeley dot edu>
Research Interests
I am interested in the mechanisms underlying human memory and cognition. I use computational models of the brain to study this question. An outline of the modeling approach I use and the specific questions I address are described in the synopsis of research. For a full list of my research publications, see the cv.
Recent Publications
K. Koeppsell, X. Wang, Y. Wei, V. Vaingankar, J. A. Hirsch, F. T. Sommer: Dynamical coding opens a novel channel for visual information to reach cortex. (2006) submitted
M. Rehn, F. T. Sommer: A network that uses few active neurons to code visual input predicts the diverse shapes of cortical receptive fields. (2006) submitted
M. Rehn, F. T. Sommer: Storing and restoring visual input with collaborative rank coding and associative memory. Neurocomputing (2006) in press pdf
F. T. Sommer, P. Kanerva: Can neural models of cognition benefit from the advantages of connectionism?
Behavoral Brain Sciences (2006) in press pdf
F. T. Sommer, T. Wennekers: Synfire chains with conductance-based neurons: internal timing and coordination with timed input. Neurocomputing 65-66 (2005) 449 - 454 pdf
D. George, F. T. Sommer: Computing with inter-spike inverval codes in networks of integrate and fire neurons.
Neurocomputing 65-66 (2005) 414 - 420 pdf
L. M. Martinez, Q. Wang, R. C. Reid, C. Pillai, J.-M. Alonso, F. T. Sommer, J. A. Hirsch: Receptive field structure varies with layer in the primary visual cortex. Nature Neuroscience 8 (12) (2005) 372 - 379 pdf
A. Knoblauch, F. T. Sommer: Spike-timing dependent plasticity can form "zero-lag" links for cortical oscillations. Neurocomputing 52-54 (2004) 301 - 306 pdf
M. Rehn, F. T. Sommer: A network for the rapid formation of binary sparse representations of sensory input. Technical Report RNI-04-1 (2004)
G. Glatting, F. M. Mottaghy, J. Karitzky, A. Baune, F. T. Sommer, G. B. Landwehrmeyer, S. N. Reske: Improving binding potential analysis in [11C]raclopide PET studies using cluster analysis. Medical Physics 31 (4) (2004) 902-906 pdf
J. A. Hirsch, L. M. Martinez, C. Pillai, J.-M. Alonso, Q. Wang, F. T. Sommer: Functionally distinct inhibitory neurons at the first stage of visual cortical processing.
Nature Neuroscience 6 (12) (2003) 1300 - 1308 pdf
F. T. Sommer, T. Wennekers: Models of distributed associative memory networks in the brain
Theory in Biosciences (122) (2003) 70 - 86 pdf
Eds: F. T. Sommer, A. Wichert: Exploratory analysis and data modeling in functional neuroimaging MIT Press, Boston, MA (2003) link to publisher (table of contents, etc.)
A. Knoblauch, F. T. Sommer: Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas Neurocomputing (52-54) (2003) 301-306 pdf
V. Schmitt, R. Koetter, F. T. Sommer: The impact of thalamo-cortical projections on activity spread in cortex Neurocomputing (52-54) (2003) 919-924 pdf
Synopsis of Research
Computational models of the brain
Behavior can be linked to computations in the brain and studying abstract neural networks can reveal the basic types of computation possible in nerve tissue. However, abstract neural networks are only crude models of the biophysics of the brain. They can provide a "functional skeleton" in a brain model but more details have to be included in order to also quantitatively describe the (bio)physics of neurons, synapses, etc., as observed in Neuro-physiology and -anatomy. There is an fundamental difference between models of physics and computational brain models: physics models have usually a single interface to an experimental domain, computational brain models have two, they should reflect biophysics and behavior as well (Sommer et al. 2003). The program of neuroscience is to reveal how physiological/anatomical features of the brain relate to its function. Computational brain models can establish and test hypothesized links between biophysical features and function but in this role they are torn between two extremes. In order to rule out beforehand as little as possible, experimental neuroscience explores the full diversity of aspects and a computational brain model should reflect the experimental findings as detailed as possible. On the other hand a computational theory of a behavior is basically an algorithm and the cleanest form to instantiate such a hypothesis is by the simplest neural network that can do the job efficiently and is not incompatible with neurobiology (following Occam's razor principle). Obviously, no single computational brain model can escape this dilemma. The way I study associative memory function of the brain is to investigate a chain of models that vary in the faithfulness of the biophysical description. The starting point of the chain is an abstract neural network model corresponding to the hypothetical function. Features can be added to the abstract model step by step, reflecting neurobiological features. Thus the computational function can be first analyzed in the abstract model. The predictions of biophysical brain properties arising from the functional hypothesis can be assessed in the more detailed models. Qualitative changes in the model behavior induced by certain model features can be easily traced in the chain of models.
Models for local circuits in the brain
W. James, F. Hayek and D. O. Hebb postulated theories of memory and mental association involving distributed neural representations and synaptic plasticity. The most elaborated theory (Hebb, 1949) predicts a concrete synaptic learning rule, the Hebb rule, for learning (distributed) neural representations of mental entities (thoughts, percepts) called cell assemblies. The direct physiological confirmation of local learning rules in synapses as proposed in Hebb's theory was a huge success. In other respects, however, the predictive value of Hebb's theory was limited because without a mathematical formulation the predictions were qualitative and could not be tested in experiments.
Neuronal associative memories are abstract neural networks that implement the basic mechanisms of learning and association as postulated in Hebb's theory. Neural associative memories have been proposed as computational models for local strongly connected cortical circuits (Palm, 1982, Amit 1989). The computational function is the storage and error-tolerant recall of distributed activity patterns. The memory recall is called associative pattern completion if it involves the completion of a noisy pattern according involving memory. Another recall variant possible in associative memories is pattern recognition (Palm & Sommer 1992) where inputs are just classified as "known" or "unknown".
A number of different abstract models of associative memory has been proposed in the literature. My choice of an abstract model as starting point in a chain of computational brain models relies on the assumption that nature has implemented the hypothetic computational function efficiently.
- How to measure the efficiency of associative memories?
Information capacity has become the standard measure for the efficiency of associative memories. However, the traditional measures do not take into account all relevant flows of information during learning and retrieval. In particular, they neglect the loss due to retrieval errors as well as the information contained in the noisy patterns during pattern completion tasks. For definitions of information capacity that take into account all these factors see (Sommer 1993, Palm & Sommer 1996).
- Why to use sparse memory representations?
(Olshausen & Field 1996, Bell & Sejnowski 1996) studied optimal coding strategies of natural visual scenes. They found that optimal coding of natural statistics onto sparse representations yields neural codes that are in good agreement with the receptive field properties of neurons in primary visual cortex.
Another argument for sparse memory representations in the brain follows from the analysis of learning in associative memory. Elisabeth Gardner's work (1988) revealed a striking match between sparse memory representations and local learning (Sommer 1993). Based on her results one can conclude that first, local learning rules store sparse memory patterns more efficiently than nonsparse patterns and second, only for sparse patterns local learning cannot be outperformed by nonlocal learning. Thus, sparse representations of memories naturally arise from optimal local synaptic learning, a property of synaptic plasticity well confirmed in physiological studies. Gardner's analysis allows this deep fundamental insight, however, it is not constructive, for instance, it only takes into account the learning process and not the recall process. Thus, the question remains:
- What concrete associative memory models process sparse memory representations efficiently?
A general analysis of local learning rules --assessing the capacity of storage and retrieval in a pattern association task-- is described in (Sommer 1993; Palm & Sommer 1996). For sparse memory patterns, the analysis characterizes the class of efficient local learning rules. How different superposition schemes for memory traces (in particular, linear superposition as in the Hopfield model and clipped superposition as in the Willshaw model) compare in terms of efficiency in sparse pattern recognition is analyzed in (Palm & Sommer 1992; Sommer 1993).
The analyses of sparse associative memory indicate that the classical Willshaw-Steinbuch model (Steinbuch, 1961; Willshaw et al, 1969) is among the most efficient models. However, (Palm & Sommer 1992; Sommer 1993) also shows for this model that the learning provides a higher capacity than the retrieval, i.e., the retrieval in the original model is an information bottleneck. This result raises the question whether the Willshaw model can be improved by modified retrieval.
A modification of the autoassociative Willshaw model employing iterative retrieval was analyzed in (Sommer 1993; Schwenker, Sommer and Palm 1996). It is shown that the modified retrieval retains the asymptotic information capacity of the original model. However, for (large) finite-sized networks iterative retrieval has the following advantages: 1) A significant increase in recall precision. 2) The asymptotic capacity value can be reached in networks of already moderate sizes -- the original model does not reach asymptotic performance at practical network sizes. 3) Iterative retrieval is fast. The typical number of required iteration steps is low (<4).
In bidirectional associative memories (Kosko 1988) with sparse patterns, naive iterative retrieval does not provide the same improvement as for autoassociation. (Sommer & Palm 1998, Sommer & Palm 1999) explain why and suggest a novel and very efficient iterative retrieval in bidirectional associative memories, called crosswise bidirectional retrieval (see also below).
Having identified efficient instances of sparse associative memory models these can be used in models of neuronal circuits of the brain.
- What are the properties of cell assemblies?
If Hebb's theory were true and brain function would be based on cell assemblies, what would their properties be, i.e., how many cells do typically form an assembly and how many assemblies "fit" in a local circuit of cortical tissue? (Sommer 2000) analyzes a model of a square millimeter of cortex (number of neurons and connection densities were taken from neuroanatomical studies, cell excitability was estimated based on physiological studies). The study reveals that the local synapses are used most efficiently if the size of the assemblies is a few hundred cells and the number of assemblies is in the range between ten and sixty thousand. Due to the incomplete connectivity in the network there arises an interesting extension in functionality: A small set of assemblies (~5) can be recalled simultaneously and not just a single one as in classical associative memories.
- How is associative memory reflected in temporal structure of neural activity?
Simulation studies with associative networks of conduction-based spiking neurons (two-compartment neurons a la Pinsky & Rinzel, 1994) are described in (Sommer & Wennekers 2000, Sommer & Wennekers 2001). It is revealed that associative memory recall can be completed extremely fast, that is, in 25-60ms. Gamma-oscillations can indicate iterative recall (that reaches higher retrieval precision) with latencies of 60-260ms.
Organization of meso- and macroscopic activity patterns in the brain
While neural network models described in the previous section help understanding computations of local brain circuits, cognitive functions ultimately rely on the meso- and macroscopic organization of neural activity in the brain. The studies in this section address how macroscopic activity flow can establish cooperative interactions even between remote brain regions.
- Can large cell assemblies be integrated by cortico-cortical projections?
Reciprocal connectivity is the most common type of cortico-cortical projections reported by neuroanatomical tracer studies. Thus it is likely that reciprocal connections play an important role in large-scale integration of neural representations or cell assemblies. (Sommer & Wennekers 2003) lay out how bidirectional association in reciprocal projections could provide such an integration and how this ties into earlier work about distributed representations, such as the theories of Wickelgren, Edelman, Damasio, Mesulam and others.
Macroscopically distributed cell assemblies would easily form, if already a single reciprocal connection would express associative memory function. In (Sommer & Wennekers, 2000) a bidirectional associative memory model with conductance-based neurons is investigated that, in fact, performs efficiently. A more abstract model that is very robust with respect to cross talk --and therefore might be a good computational model of a cortico-cortical projection-- is proposed in (Sommer & Palm 1998, Sommer, Wennekers & Palm 1998, Sommer & Palm1999).
- What causes coherent oscillations in distant brain regions? Does it require learning?
In recordings of neuronal activity, coherent oscillations mostly occur in phase, even if the recording sites in cortex are far apart of each other. For fast (gamma range) oscillations this finding is puzzling given the large delay times reported in long-range projections. Modeling studies using reciprocal excitatory couplings with such delay times predict anti-phase rather than in-phase correlation. In (Knoblauch & Sommer 2002, Knoblauch & Sommer 2003) the conditions are studied under which reciprocal cortical connections with realistic delays can express coherent gamma oscillations. It is demonstrated that learning based on spike-timing dependent synaptic plasticity (Markram et al. 1997, Poo et al. 1998) can provide robust zero lag coherence over long-range projections -- zero-lag links.
- How can macroscopic activity patterns form through cortico-cortical connections?
Neuronography experiments (MCulloch et al, Pribham et al) revealed that epileptiform activity elicited by local application of strychnine entails persistent patterns of activity involving the activity of many brain areas. (Sommer & Koetter 1997, Koetter & Sommer 2000) investigates in a computer model the relation between the anatomy of cortico-cortical projections and the expression of persistent macroscopic activity patterns. In the model the connection weights between brain areas can be either simple cortex connectivity schemes such as nearest neighbor connections or data about cortico-cortical projections gathered by neuroanatomical tracer studies and collatedin the CoCoMac database. The comparison between different connectivity schemes shows that neuroanatomical data can best explain the measured activity patterns. It is concluded that long-range connections are crucial in the formation of patterns that have been observed experimentally. Furthermore, the simulations indicate multisynaptic reverberating activity propagation and clearly rule out the hypothesis that just monosynaptic spread would produce the patterns -- as was speculated in the experimental literature. (V. Schmitt et al 2003) investigates the influence of thalamocortical connections in a similar model.
* How to reveal organization of neuronal activity by Neuroimaging?
Imaging methods like positron emission tomography (PET) and functional magnetic resonance (fMRI) provide the first (albeit indirect) windows to macroscopic activation patterns in the working brain. The spatio-temporal data sets provided by this methods are usually searched for functional activity using regression analysis based on temporal shapes that are estimated based on the timing in the experimental paradigm. However, in short-lasting events and in most cognitive tasks the temporal shape cannot be reliably predicted. In these cases the detection of functional activity requires analysis methods based on weaker assumptions about the signal course. (Baune et al. 1999) describes a new cluster analysis method for detecting regions of fMRI activation. The method requires no information about the time course of the activation and is applied to detect timing differences in the activation of supplementary motor cortex and motor cortex during a voluntary movement task. (Wichert et al. 2003) describes the extension of the method of Baune et al. for event-related designs. A new method of experimental design/data processing is proposed that yields volumes of data where all slices are perfectly timed. This avoids the artifacts introduced by usual data preprocessing methods based on phase-shifting. In (Wichert et al. 2003) the exploratory method is applied to reveal functional activity during a n-back working memory task. In (Baune et al., 2001, Ruckgaber et al.., 2001) a cluster analysis method was developed to detect microgilia activation which is a very sensitive indicator for brain lesions.
Mathematical analysis of associative memories
* Bayesian theory of associative memory
An attempt to tame the zoo of associative memory models proposed in the literature is the Bayesian theory of associative memory described in (Sommer & Dayan 1998). In this theory the optimal retrieval dynamics can be derived from the uncertainties about the input pattern and the synaptic weights. Our analysis explains the success of many model modifications proposed on heuristic basics, for instance, addition of a ferromagnetic term, of site-dependent thresholds, diagonal terms, various threshold strategies, etc.
* Combinatorial analysis of the Willshaw model
The full combinatorial analysis of the finite Willshaw model can be found in (Sommer & Palm 1999). It predicts distributions of the dendritic potentials and retrieval errors for arbitrary network sizes and all possible types of input noise.
* Signal-to-noise analysis of local synaptic learning rules
A general signal-to-noise analysis of local learning rules is given in (Sommer 1993; Palm & Sommer 1996). The final result is basically one formula, equation (3.23) in (Palm & Sommer 1996) calculating the S/N for arbitrary learning rules, sparseness levels and input errors. These papers also contain the full information-theoretical treatment of learning and retrieval in associative memories that lead to new definitions of information capacity.
* Asymptotic analysis of sparse Hopfield- and Willshaw-models performing pattern recognition
The asymptotic analysis of the sparse Hopfield and Willshaw model is provided in (Palm & Sommer 1992). We use elementary analysis information theory and can avoid the cumbersome Replica trick used in the earlier analysis of the Hopfield model (Tsodyks & Feigelman, 1988).
Selected Publications by Theme
(for a complete listing, see cv)
Mechanisms of memory in realistic neural networks
Long-term memory
F. T. Sommer, T. Wennekers : Associative memory in networks of spiking neurons Neural Networks 14 (6-7) Special Issue: Spiking Neurons in Neuroscience and Technology (2001) 825 - 834 pdf
F. T. Sommer, T. Wennekers: Modeling studies on the computational function of fast temporal structure in cortical circuit activity Journal of Physiology - Paris 94 (5/6) (2000) 473-488 pdf
F. T. Sommer: On cell assemblies in a cortical column Neurocomputing (32-33) (2000) 517 - 522 pdf
T. Wennekers, F. T. Sommer: Gamma-oscillations support optimal retrieval in associative memories of two-compartment neurons Neurocomputing 26-27 (1999) 573 - 578 pdf
T.Wennekers, F.T.Sommer, G.Palm: Iterative Retrieval in Associative Memories by Threshold Control of Different Neural Models In: Supercomputers in Brain Research: From Tomography to Neural Networks World Scientific Publishing Comp (1995) 301-319 ps
Short-term memory
A. Knoblauch, T. Wennekers, F. T. Sommer: Is voltage dependent synaptic transmission in NMDA receptors a robust mechanism for working memory? Neurocomputing (44-46) (2002) 19-24 pdf
U. Vollmer, F. T. Sommer: Coexistence of short and long term memory in a model network of realistic neurons Neurocomputing (38-40) (2001) 1031 - 1036 pdf
Physiology and information processing in early vision
J. A. Hirsch, L. M. Martinez, C. Pillai, J.-M. Alonso, Q. Wang, F. T. Sommer: Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nature Neuroscience 6 (12) (2003) 1300 - 1308 pdf
Large-scale integration of cortical representations
F. T. Sommer, T. Wennekers : Models of distributed associative memory networks in the brain Theory in Biosciences (122) (2003) 70 - 86 pdf
Associative memory in reciprocal cortico-cortical projections
F. T. Sommer, T. Wennekers : Associative memory in a pair of cortical cell groups with reciprocal projections Neurocomputing (38-40) (2001) 1575 - 1580 pdf
F. T. Sommer, T. Wennekers, G. Palm: Bidirectional completion of cell assemblies in the cortex Computational Neuroscience: Trends in Research 1998, Plenum Press, New York, (1998) ps
Large-scale integration relying on oscillations
A. Knoblauch, F. T. Sommer: Spike-timing dependent plasticity can form "zero-lag" links for cortical oscillations submitted to Neurocomputing (2003) pdf
A. Knoblauch, F. T. Sommer: Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas Neurocomputing (52-54) (2003) 301-306 pdf
Large-scale models of cortical activity spread
V. Schmitt, R. Koetter, F. T. Sommer: The impact of thalamo-cortical projections on activity spread in cortex Neurocomputing (2003) (52-54) (2003) 919-924 pdf
R. Kötter and F. T. Sommer: Global relationship between anatomical connectivity and activity propagation in the cerebral cortex Phil. Trans. R. Soc. Lond. B (355) (2000) 127 - 134 pdf
F.T.Sommer, R. Kötter: Simulating a Network of Cortical Areas Using Anatomical Connection Data in the Cat Computational Neuroscience: Trends in Research 1997, Plenum Press, New York (1997) 511-517 ps
R. Koetter, P. Nielsen, J. Dyhrfjeld, F. T. Sommer, G. Northoff: Multi-level integration of quantitative neuroanatimical data Chapter in Computational Neuroanatomy: Principles and Methods. Ed.: G. A. Ascoli, Humana Press Inc., Totowa, NJ (2002)
Theory of sparse associative memory
Bayesian theory of autoassociative memory
F. T. Sommer, P. Dayan: Bayesian Retrieval in Associative Memories with Storage Errors IEEE Transactions on Neural Networks 9 (4) (1998) 705-713 pdf
Bidirectional sparse associative memory
F. T. Sommer, G. Palm: Improved Bidirectional Retrieval of Sparse Patterns Stored by Hebbian Learning Neural Networks 12 (2) (1999) 281 - 297 pdf
F. T. Sommer, G. Palm: Bidirectional Retrieval from Associative Memory Advances in Neural Information Processing Systems 10, MIT Press, Cambridge, MA (1998) 675 - 681 pdf
Analysis of recurrent sparse autoassociative memories
F.Schwenker, F.T.Sommer, G.Palm: Iterative Retrieval of sparsely coded associative memory patterns Neural Networks 9 (1996) 445-455 ps
Analysis of sparse pattern recognition
G.Palm, F.T.Sommer: Information capacity in recurrent Mc.Culloch-Pitts networks with sparsely coded memory states Network 3 (1992) 177-186 pdf
G.Palm, F.T.Sommer: Information and pattern capacities in neural associative memories with feedback for sparse memory patterns In: Neural Network Dynamics, Springer New York (1992). Eds.: J.G.Taylor, E.R.Caianello, R.M.J.Cotterill, J.W.Clark, 3-18
Analysis of local learning rules
G.Palm, F.T.Sommer: Associative data Storage and Retrieval in Neural Nets In: Models of Neural Networks III, Springer New York (1996) Eds: E.Domany, J.L.van Hemmen, K.Schulten, 79-118 ps
Book, PhD-Thesis (in german)
F. T. Sommer: Theorie neuronaler Assoziativspeicher - Lokales Lernen und iteratives Retrieval von Information Verlag Hänsel-Hohenhausen (1993) ISBN 3-89349-901-6 ps
Neuroimaging
Edited book
Eds: F. T. Sommer, A. Wichert: Exploratory analysis and data modeling in functional neuroimaging MIT Press, Boston, MA (2003) link to publisher (table of contents, etc.)
General issues of Neuroimaging
F. T. Sommer, J. A. Hirsch, A. Wichert: Theories, data analysis and simulation models in neuroimaging - an overview In Exploratory analysis and data modeling in functional neuroimaging. Eds.: F.T. Sommer and A. Wichert, MIT Press, Boston, MA (2003) pdf
V. Schmitt, A. Wichert, J. Grothe, F. T. Sommer: The brain positioning software In: A practical guide of neuroscience databases and associated tools, Ed. R. Koetter, Kluwer, NY (2002)
Unsupervised method of detecting functional activity in Neuroimaging
A. Wichert, B. Abler, J. Grothe, H. Walter, F. T. Sommer: Exploratory analysis of event-related fMRI demonstrated in a working memory study In Exploratory analysis and data modeling in functional neuroimaging. Eds.: F.T. Sommer and A. Wichert, MIT Press, Boston, MA (2003) pdf
A. Wichert, H. Walter, G. Groen, A. Baune, J. Grothe, A. Wunderlich, F. T. Sommer: Detection of delay selective activity during a working memory task by explorative data analysis Neuroimage (13) (2001) 282
A. Baune, F. T. Sommer, M. Erb, D. Wildgruber, B. Kardatzki, G. Palm, W. Grodd: Dynamical Cluster Analysis of Cortical fMRI Activation NeuroImage 6 (5) (1999) 477 - 489 pdf
Analysis techniques in Positron Emission Tomography
G. Glatting, F. M. Mottaghy, J. Karitzky, A. Baune, F. T. Sommer, G. B. Landwehrmeyer, S. N. Reske: Improving binding potential analysis in [11C]raclopide PET studies using cluster analysis. Medical Physics 31 (4) (2004) 902-906 pdf
A. Baune, A. Wichert, G. Glatting, F. T. Sommer: Dynamical cluster analysis for the detection of microglia activation in Artificial Neural Nets and Genetic Algorithms. Eds. V. Kurkova, N. C. Stelle, R. Neruda, M. Karny. Springer, Wien (2001) 442 - 445
J. Ruckgaber, G. Glatting, J. Karitzky, A. Baune, F. T. Sommer, B. Neumaier, S. N. Reske: Clusteranalyse in der Positronen-Emissions-Tomographie des Hirns mit C-11-PK11195 Nuklearmedizin (40) (2001) A95
Neural associative memories in information technology
G. Palm, F. Schwenker, F. T. Sommer, A. Strey: Neural associative memory In Associative Processing and Processors, Eds. A. Krikelis and C. C. Weems, IEEE CS Press, Los Alamitos, CA, USA (1997) 307-326 ps
F.T.Sommer, F.Schwenker, G.Palm: Assoziative Speicher als Module in informationsverarbeitenden Systemen In: Contributions to the Workshop Aspekte Neuronalen Lernens, Eds. L.Cromme, J. Wille, T. Kolb Tech Report, TU Cottbus M-01/1995 (1995)
G.Palm, F.Schwenker, F.T.Sommer: Associative memory and sparse similarity preserving codes In: From Statistics to Neural Networks: Theory and Pattern Recognition Applications, Ed. V.Cherkassky, Springer NATO ASI Series F, New York (1994) 282-302 Earlier publications on storage of hydrogen in metal lattices
Workshops and Teaching Courses
Recent workshops:
- CNS 2002 workshop: Neural assemblies
- NIPS 2000 workshop: Explorative analysis and data modeling in functional neuroimaging
Graduate teaching (US):
- Theoretical and computational neuroscience (teaching participation at course MCB262/PSYCH290P, UC Berkeley)
Graduate teaching (semester courses held at University of Ulm):
- Information retrieval and associative memory
- Computational Neuroscience
- Theoretical methods for the interpretation of medical functional imaging data
- Information Retrieval
- Associative memories: conventional and neuronal
- Neural Cell Assemblies