Difference between revisions of "Michael DeWeese"

From RedwoodCenter
Jump to navigationJump to search
Line 29: Line 29:
 
*34. P.R. Zulkowski and M.R. DeWeese. [https://redwood.berkeley.edu/w/images/b/b3/Zulkowski_DeWeese_optimal_erasure_1_bit_preprint.pdf Optimal finite-time erasure of a classical bit.] Physical Review E. 89(5):052140 (2014).   
 
*34. P.R. Zulkowski and M.R. DeWeese. [https://redwood.berkeley.edu/w/images/b/b3/Zulkowski_DeWeese_optimal_erasure_1_bit_preprint.pdf Optimal finite-time erasure of a classical bit.] Physical Review E. 89(5):052140 (2014).   
  
*33. C. Rodgers and M.R. DeWeese.  [https://redwood.berkeley.edu/w/images/c/c5/Rodgers_and_DeWeese_rodent_auditory_stim_selection_A1_PFC_Neuron_2014_w_Sup_Info.pdf Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents.] Neuron, 82(5), p1157–1170. (2014).  ([https://redwood.berkeley.edu/w/images/6/6e/Odoemene_and_Churchland_Neuron_Preview_of_Rodgers_and_DeWeese_2014.pdf Neuron Preview of this paper by Odoemene and Churchland])
+
*33. C.C. Rodgers and M.R. DeWeese.  [https://redwood.berkeley.edu/w/images/c/c5/Rodgers_and_DeWeese_rodent_auditory_stim_selection_A1_PFC_Neuron_2014_w_Sup_Info.pdf Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents.] Neuron, 82(5), p1157–1170. (2014).  ([https://redwood.berkeley.edu/w/images/6/6e/Odoemene_and_Churchland_Neuron_Preview_of_Rodgers_and_DeWeese_2014.pdf Neuron Preview of this paper by Odoemene and Churchland])
  
 
*32. J. Sohl-Dickstein, M. Mudigonda, M.R. DeWeese.  [https://redwood.berkeley.edu/w/images/2/2b/SohlDickstein_Mudigonda_DeWeese_Sampling_Without_Detailed_Ballance_preprint.pdf Hamiltonian Monte Carlo Without Detailed Balance.] Proceedings of the 31st International Conference on Machine Learning (Beijing) (2014).
 
*32. J. Sohl-Dickstein, M. Mudigonda, M.R. DeWeese.  [https://redwood.berkeley.edu/w/images/2/2b/SohlDickstein_Mudigonda_DeWeese_Sampling_Without_Detailed_Ballance_preprint.pdf Hamiltonian Monte Carlo Without Detailed Balance.] Proceedings of the 31st International Conference on Machine Learning (Beijing) (2014).

Revision as of 06:47, 28 June 2014

Here is my short CV and below is my publication list including some preprints. Most papers are available here as PDFs.

Selected manuscripts in preparation:

  • j. V. Carels and M.R. DeWeese. A comparison of multi- and single-unit spectrotemporal receptive fields in the primary auditory cortex. (in preparation)
  • i. P.R. Zulkowski and M.R. DeWeese. Optimal entropy production. (in preparation)
  • h. N. Carlson, J. Livezey, V.L. Ming, and M.R. DeWeese. Probe stimuli affect receptive field estimation of model auditory neurons optimized to represent speech efficiently. (in preparation)
  • f. S. Corinaldi and M.R. DeWeese. A network model of task switching optimized to minimize errors predicts several counterintuitive features of human behavioral data. (in preparation)

Submitted manuscripts:

All publications:

  • 23. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. Minimum Probability Flow Learning. Proceedings of the 28th International Conference on Machine Learning (Bellevue, WA) (2011).
  • 11. M.R. DeWeese and A.M. Zador. Binary coding in auditory cortex. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 15, 101 (2003).
  • 5. M.R. DeWeese. Optimization principles for the neural code. Network 7, 325-331 (1996).