VS298: Unsolved Problems in Vision

From RedwoodCenter
Revision as of 20:58, 2 September 2014 by Karl (talk | contribs)
Jump to navigationJump to search

One of the goals of vision science is to understand the nature of perception and its neural substrates. There are now many well established techniques and paradigms in both psychophysics and neuroscience to address problems in vision. However, knowing how to frame these questions for investigation is not necessarily obvious. Nervous systems present us with stunning complexity, and the purpose of perception itself is deeply mysterious. The goal of this seminar course is to step back and ask, what are the important problems that remain unsolved in vision research, and how should these be approached empirically? The course will consist of alternating weeks of discussion and guest lectures by vision scientists who will frame their views of the core unsolved problems. Interdisciplinary groups of students will devise a practical research plan to address an unsolved problem of their choice.

Instructors: Stan Klein, Jerry Feldman, Bruno Olshausen, and Karl Zipser
GSI: Dan Coates

Enrollment information:

VS 298 (section 2), 2 units
CCN: 66478

Meeting time and place:

Tuesday 6-8, 489 Minor

Email list:

vs298-unsolved-problems@lists.berkeley.edu subscribe


Weekly schedule:

Date Topic/Reading
Sept. 2 Introduction
Sept. 9 Methodology in vision science (Stan Klein)
  • Double-judgment psychophysics: problems and solutions pdf Read pp 1560-1567 This will give a glimpse into some of the issues involved with the relationship between detecting and identifying an object. The second part of the paper is more complicated.
  • Measuring, estimating, and understanding the psychometric function: A commentary pdf I (Stan Klein) was an editor of a special issue of "Perception & Psychophyics" and I wrote the summary article not only commenting on a number of the articles, but also trying to clarify some misunderstood aspects in the field.
  • Psychophysics : A Practical Introduction site This is the text by Kingdom and Prins that I've used when teaching psychophysics methods. I suggest reading Chapters 2 & 3. Some of the dichotomies in Chapter 2 are directly relevant to a number of unsolved problems in vision. Some might even be insoluble.

Marcus background discussion

  • Marcus readings...
Sept. 19

(Friday)


Gary Marcus lecture: Computational diversity and the mesoscale organization of the neocortex
- 12:00, 5101 Tolman


Sept. 23 Marcus discussion

Gallant background discussion

  • Gallant papers...
Sept. 30
Jack Gallant lecture (tentative date)


Oct. 7 Gallant discussion

Malik background discussion

  • Malik papers...
Oct. 14
Jitendra Malik lecture (tentative date)


Oct. 21 Malik discussion

Nakayama background discussion

  • Nakayama, K. (1999). Mid-level vision. In R. A. Wilson & F. C. Keil (Eds.), The MIT encylopedia of the cognitive sciences Cambridge: MIT Press pdf
  • Nakayama, K. (2010) "Vision going social." The science of social vision. Adams, R.B. Jr., Ambady, N., Nakayama, K. & Shimojo, S. (Eds) Oxford University Press pdf
  • Nakayama, K. and Martini, P. (2011) Situating Visual Search. Vision Research, 51, 1526-1537. pdf

(All Nakayama pubs available here)

Oct. 28
Ken Nakayama lecture


Nov. 4 Nakayama discussion

Wandell background discussion

  • To appear: Computational modeling of responses in human visual cortex. BA Wandell, J Winawer, KN Kay.

In Brain Mapping: An Encyclopedic Reference (Edited by Thompson and Friston.)

(Friday) Nov. 14
Brian Wandell lecture


Nov. 18 Wandell discussion

Feldman background discussion

  • Feldman papers...
Nov. 25
Feldman lecture (tentative)


Dec. 2
Koch lecture (tentative date)