VS265: Reading Fall2012: Difference between revisions

From RedwoodCenter
Jump to navigationJump to search
No edit summary
m (Bruno moved page VS265: Reading to VS265: Reading Fall2012 without leaving a redirect)
 
(24 intermediate revisions by the same user not shown)
Line 45: Line 45:
* Rozell, Johnson, Baraniuk, Olshausen. [http://redwood.berkeley.edu/vs265/rozell-sparse-coding-nc08.pdf Sparse Coding via Thresholding and Local Competition in Neural Circuits], Neural Computation 20, 2526–2563 (2008).
* Rozell, Johnson, Baraniuk, Olshausen. [http://redwood.berkeley.edu/vs265/rozell-sparse-coding-nc08.pdf Sparse Coding via Thresholding and Local Competition in Neural Circuits], Neural Computation 20, 2526–2563 (2008).
* Simoncelli, Olshausen. [http://redwood.berkeley.edu/vs265/simoncelli01-reprint.pdf Natural Image Statistics and Neural Representation], Annu. Rev. Neurosci. 2001. 24:1193–216.
* Simoncelli, Olshausen. [http://redwood.berkeley.edu/vs265/simoncelli01-reprint.pdf Natural Image Statistics and Neural Representation], Annu. Rev. Neurosci. 2001. 24:1193–216.
* Smith, Lewicki. [http://redwood.berkeley.edu/vs265/smith-lewicki-nature06.pdf Efficient auditory coding], Nature Vol 439 (2006).
* van Hateren & Ruderman [http://redwood.berkeley.edu/vs265/vanhateren-ruderman98.pdf Independent component analysis of natural image sequences], Proc. R. Soc. Lond. B (1998) 265. (blocked sparse coding/ICA of video)
* Olshausen BA [http://redwood.berkeley.edu/bruno/papers/icip03.pdf Sparse coding of time-varying natural images], ICIP 2003. (convolution sparse coding of video)
* Lewicki MS [http://www.cnbc.cmu.edu/cplab/papers/Lewicki-NatNeurosci-02.pdf Efficient coding of natural sounds], Nature Neuroscience, 5 (4): 356-363, 2002. (blocked sparse coding/ICA of sound)
* Smith E, Lewicki MS. [http://redwood.berkeley.edu/vs265/smith-lewicki-nature06.pdf Efficient auditory coding], Nature Vol 439 (2006). (convolution sparse coding of sound)


==== 15 Oct ====
==== 15 Oct ====
Line 69: Line 72:
* [http://redwood.berkeley.edu/vs265/webster-face-adaptation.pdf Adaptation to natural facial categories], Michael A. Webster, Daniel Kaping, Yoko Mizokami & Paul Duhamel, Nature, 2004.
* [http://redwood.berkeley.edu/vs265/webster-face-adaptation.pdf Adaptation to natural facial categories], Michael A. Webster, Daniel Kaping, Yoko Mizokami & Paul Duhamel, Nature, 2004.
* [http://redwood.berkeley.edu/vs265/leopold.pdf Prototype-referenced shape encoding revealed by high-level aftereffects], David A. Leopold, Alice J. O’Toole, Thomas Vetter and Volker Blanz, Nature, 2001.
* [http://redwood.berkeley.edu/vs265/leopold.pdf Prototype-referenced shape encoding revealed by high-level aftereffects], David A. Leopold, Alice J. O’Toole, Thomas Vetter and Volker Blanz, Nature, 2001.
* [http://redwood.berkeley.edu/vs265/Blanz-siggraph-99.pdf A Morphable Model For The Synthesis Of 3D Faces], Blanz & Vetter 1999.
* [http://mbthompson.com/research/ Matthew B. Thompson's web page on flashed face distortion effect]
==== 24 Oct ====
* [http://redwood.berkeley.edu/vs265/attractor-networks.pdf Handout] on attractor neural networks
* [http://redwood.berkeley.edu/vs265/hopfield82.pdf original Hopfield (1982) paper]
* [http://redwood.berkeley.edu/vs265/hopfield84.pdf Hopfield (1984) paper]
* [http://redwood.berkeley.edu/vs265/marr-poggio-science76.pdf Marr-Poggio stereo algorithm paper]
* [http://redwood.berkeley.edu/vs265/zhang96.pdf Kechen Zhang paper on bump circuits]
* [http://redwood.berkeley.edu/vs265/olshausen-etal93.pdf Olshausen, Anderson & Van Essen, dynamic routing circuit model]
* HKP Chapters 2 and 3
==== 29 Oct ====
Chris Hillar guest lecture:
* [http://www.msri.org/people/members/chillar/files/mpf_hopfield.pdf Efficient and Optimal Binary Hopfield Associative Memory Storage Using Minimum Probability Flow]
* [http://www.msri.org/people/members/chillar/files/arxiv_prepaper.pdf Robust exponential binary pattern storage in Little-Hopfield networks]
* [http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf NP-Hard Discrete Quadratic Optimization going into image segmentation (Shi, Malik 2000)]
==== 5 Nov ====
* [http://redwood.berkeley.edu/vs265/probability.pdf A probability primer]
* [http://redwood.berkeley.edu/vs265/bayes-prob.pdf Bayesian probability theory and generative models]
* [http://redwood.berkeley.edu/vs265/mog.pdf Mixture of Gaussians model ]
* T.J. Loredo, [http://redwood.berkeley.edu/vs265/loredo-laplace-supernova.pdf From Laplace to supernova SN1987A:  Bayesian inference in astrophysics]
==== 19 Nov ====
* HKP Chapter 7, section 7.1 (Boltzmann machines)
Application to neural data analysis:
* E. Schneidman, M.J. Berry, R. Segev and W. Bialek,[http://www.nature.com/nature/journal/v440/n7087/full/nature04701.html Weak pairwise correlations imply strongly correlated network states in a neural population], Nature 4400 (7087) (2006), pp. 1007-1012.
* J. Shlens, G.D. Field, J.L. Gauthier, M.I. Grivich, D. Petrusca, A. Sher, A.M. Litke and E.J. Chichilnisky, [http://www.jneurosci.org/cgi/content/abstract/26/32/8254 The structure of multi-neuron firing patterns in primate retina], J Neurosci 260 (32) (2006), pp. 8254-8266.
==== 21 Nov ====
* [http://redwood.berkeley.edu/vs265/info-theory.pdf Information theory primer]
* [http://redwood.berkeley.edu/vs265/handout-sparse-08.pdf Sparse coding and ICA handout]
* Jascha Sohl-Dickstein, [http://redwood.berkeley.edu/vs265/jascha-natgrad.pdf Natural gradients made quick and dirty]
* Jascha Sohl-Dickstein, [http://redwood.berkeley.edu/vs265/jascha-cookbook.pdf Natural gradient cookbook]
* Bell & Sejnowski, [http://redwood.berkeley.edu/vs265/tony-ica.pdf An Information-Maximization Approach to Blind Separation and Blind Deconvolution], Neural Comp, 1995.
* Karklin & Simoncelli, [[http://redwood.berkeley.edu/vs265/karklin-simoncelli.pdf Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons], NIPS 2011.
* Hyvarinen, Hoyer, Inki, [http://redwood.berkeley.edu/vs265/TICA.pdf Topographic Independent Component Analysis], Neural Comp, 2001.
* Karklin & Lewicki paper on  [http://redwood.berkeley.edu/vs265/karklin-lewicki2003.pdf Learning Higher-Order Structure in Natural Images], Network 2003.
* Shao & Cottrell paper on [http://redwood.berkeley.edu/vs265/hshan-nips06.pdf Recursive ICA], NIPS 2006.
==== 26 Nov ====
* Robbie Jacobs' [http://www.bcs.rochester.edu/people/robbie/jacobslab/cheat_sheet/sensoryIntegration.pdf notes on Kalman filter]
* [http://redwood.berkeley.edu/vs265/kalman.m kalman.m] demo script
* Greg Welch's [http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html  tutorial on Kalman filter]
* [http://vision.ucla.edu/~doretto/projects/dynamic-textures.html Dynamic texture models]
* Kevin Murphy's [http://redwood.berkeley.edu/vs265/murphy-hmm.pdf  HMM tutorial]
==== 28 Nov ====
* Chris Eliasmith, Charlie Anderson, [http://books.google.com/books?id=J6jz9s4kbfIC Neural Engineering:  Computation, Representation, and Dynamics in Neurobiological Systems], MIT Press, 2004.
Chapter 4 will be emailed to the class.
* Softky and Koch, [http://redwood.berkeley.edu/vs265/softky-koch-jn93.pdf The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs], J Neuroscience, January 1993, 13(1):334-350.
* Mainen and Sejnowski, [http://redwood.berkeley.edu/vs265/mainen-sejnowski.pdf Reliability of Spike Timing in Neocortical Neurons], Science, Vol 268, 6 June 1995.
* Shadlen and Newsome, [http://redwood.berkeley.edu/vs265/shadlen-newsome1.pdf Noise, neural codes and cortical organization], Curr Opin in Neur, 1994, 4:569-579.
* Shadlen and Newsom, [http://redwood.berkeley.edu/vs265/shadlen-newsome1.pdf Is there a signal in the noise?], Current Opin in Neur, 1995, 5:248-250.
* Softky, [http://redwood.berkeley.edu/vs265/softky-commentary.pdf Simple codes versus efficient codes], Current Opin in Neuro, 1995, 5:239-247.
* Izhikevich, [http://redwood.berkeley.edu/vs265/izhikevich-nn03.pdf Simple model of spiking neurons], IEEE Trans Neur Networks, 14(6):2003.
* Izhikevich, [http://redwood.berkeley.edu/vs265/izhikevich-which-nn04.pdf Which Model to Use for Cortical Spiking Neurons?], IEEE Trans Neur Networks, 15(5):2004.
==== 3 Dec ====
David Zipser guest lecture:
* HKP section 7.3
* [http://redwood.berkeley.edu/vs265/zipser-manual.pdf BPTT manual]
==== 5 Dec ====
Pentti Kanerva guest lecture:
* Kanerva, [http://redwood.berkeley.edu/vs265/kanerva09-hyperdimensional.pdf Hyperdimensional Computing]

Latest revision as of 18:47, 28 August 2014

27 Aug

29 Aug

Optional:

05 Sep

17 Sep

  • Handout on supervised learning in multi-layer feedforward networks - "backpropagation"
  • Y. LeCun, L. Bottou, G. Orr, and K. Muller (1998) "Efficient BackProp," in Neural Networks: Tricks of the trade, (G. Orr and Muller K., eds.).
  • NetTalk demo

24 Sep

Optional:

8 Oct

Optional readings:

15 Oct

Here are some additional links to papers mentioned in lecture. Optional reading:

- Gary Blasdel, Orientation selectivity, preference, and continuity in monkey striate cortex., J Neurosci, 1992. Another source of many of nice images are in the galleries on Amiram Grinvald's site: [1]

- From Clay Reid's lab, Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Make sure you look at the supplementary material and videos on their web site (seems partly broken) [2].

22 Oct

Additional reading:

24 Oct

29 Oct

Chris Hillar guest lecture:

5 Nov

19 Nov

  • HKP Chapter 7, section 7.1 (Boltzmann machines)

Application to neural data analysis:

21 Nov

26 Nov

28 Nov

Chapter 4 will be emailed to the class.

3 Dec

David Zipser guest lecture:

5 Dec

Pentti Kanerva guest lecture: