Michael DeWeese: Difference between revisions
From RedwoodCenter
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(84 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Here is my [ | Here is my [http://redwood.berkeley.edu/w/images/7/76/DeWeese_cv_short.pdf short CV] and below is my publication list. Most papers are available here as PDFs. | ||
''' | '''Publications:''' | ||
*49. P.S. Sachdeva, J.A. Livezey, M.R. DeWeese. Heterogeneous synaptic weighting improves neural coding in the presence of common noise. Neural Computation, in press. (2020). | |||
* | *48. M.Y.S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, M.R. DeWeese. Design of optical neural networks with component imprecisions. Optics express 27, 14009-14029. (2019). | ||
* | *47. M.N. Insanally, I. Carcea, R.E. Field, C.C. Rodgers, B. DePasquale, K. Rajan, M.R. DeWeese, B.F. Albanna, R.C. Froemke. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife 8, e42409. (2019). | ||
* | *46. E.M.V. Dodds, M.R. DeWeese. On the sparse structure of natural sounds and natural images: similarities, differences, and implications for neural coding. Frontiers in computational neuroscience 13, 39. (2019). | ||
* | *45. L. Kang, M.R. DeWeese. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife 8, e46351. (2019). | ||
* | *44. D. Mandal, K. Klymko, and M.R. DeWeese. Reply to Comment on ``Entropy Production and Fluctuation Theorems for Active Matter". Physical review letters 121, 139802. (2018). | ||
* | *43. D. Mandal, K. Klymko, and M.R. DeWeese. Entropy Production and Fluctuation Theorems for Active Matter. Physical Review Letters 119, 258001. (2017). | ||
* | *42. B. Albanna, C. Hillar, J. Sohl-Dickstein and M.R. DeWeese. Minimum and Maximum Entropy Distributions for Binary Systems with Known Means and Pairwise Correlations. Entropy 19, 427 (2017). | ||
*41. G. Dunn, K. Shen, J.N. Belling, T.N.H. Nguyen, E. Barkovich, K. Chism, M.M. Maharbiz, M.R. DeWeese and A. Zettl. Selective Insulation of Carbon Nanotubes. Physica Status Solidi B. 00, 1700202 (2017). | |||
* | *40. D. Mandal and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/1/1e/Mandal_%26_DeWeese_PRE_JE_generalized_to_nonHamiltonian_dynamics_2016.pdf Nonequilibrium work energy relation for non-Hamiltonian dynamics.] Physical Review E. 93(4):042129. (2016). | ||
* | *39. P.R. Zulkowski and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/f/f0/Zulkowski_DeWeese_Overdamped_Systems_PRE_2015.pdf Optimal control of overdamped systems.] Physical Review E. 92(3):032117. (2015). | ||
* | *38. P.R. Zulkowski and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/3/32/Zulkowski_DeWeese_Driven_Quantum_Systems_PRE_2015.pdf Optimal protocols for slowly driven quantum systems.] Physical Review E. 92(3):032113. (2015). | ||
*37. S.E. Marzen, M.R. DeWeese, and J.P. Crutchfield, [http://redwood.berkeley.edu/w/images/9/93/Marzen_DeWeese_Crutchfield_time_rez_dep_info_spiking_neurons_2015.pdf Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality.] Frontiers in Computational Neuroscience. 9:105. (2015). | |||
* | *36. V.M. Carels and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/b/b2/Carels_DeWeese_Neuron_Preview_Duan_et_al_2015_reprint.pdf Rats Exert Executive Control.] Neuron 86, pp. 1324-1326 (2015). | ||
* | *35. J. Sohl-Dickstein, S. Teng, B. Gaub, C. Rodgers, C. Li, M. DeWeese, and N. Harper. [http://redwood.berkeley.edu/w/images/b/bb/Sohl-Dickstein_Teng_Gaub_Rodgers_Li_DeWeese_Harper_sonic_eye_no_marquee_preprint.pdf A device for human ultrasonic echolocation.] IEEE Transactions in Biomedical Engineering. 62(6):1526-1534 (2015). | ||
* | *34. P.R. Zulkowski and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/b/b3/Zulkowski_DeWeese_optimal_erasure_1_bit_preprint.pdf Optimal finite-time erasure of a classical bit.] Physical Review E. 89(5):052140 (2014). | ||
* | *33. C.C. Rodgers and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/c/c5/Rodgers_and_DeWeese_rodent_auditory_stim_selection_A1_PFC_Neuron_2014_w_Sup_Info.pdf Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents.] Neuron, 82(5), p1157–1170. (2014). ([http://redwood.berkeley.edu/w/images/6/6e/Odoemene_and_Churchland_Neuron_Preview_of_Rodgers_and_DeWeese_2014.pdf Neuron Preview of this paper by Odoemene and Churchland]) | ||
* | *32. J. Sohl-Dickstein, M. Mudigonda, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/a/a3/Sohl-Dickstein_Mudigonda_DeWeese_LAHMC_icml2014_final_reprint.pdf Hamiltonian Monte Carlo Without Detailed Balance.] Proceedings of the 31st International Conference on Machine Learning (Beijing) (2014). | ||
* | *31. P.R. Zulkowski, D.A. Sivak, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/a/a4/Zulkowski_Sivak_DeWeese_Optimal_Transitions_Nonequil_Steady_States_PLOS1_2013_accepted.pdf Optimal control of transitions between nonequilibrium steady states.] Public Library of Science ONE. 8(12):e82754 (2013). | ||
* | *30. J. Zylberberg and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/6/62/Zylberberg_DeWeese_Decreasing_Sparseness_During_Development_PLoS_CB_2013_reprint.pdf Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images.] Public Library of Science Computational Biology. 9(8):e1003182 (2013). | ||
* | *29. T. Hromádka, A.M. Zador, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/3/32/Hromadka_Zador_DeWeese_Up_states_are_rare_in_A1_J_Neurophysiol_2013.pdf Up-states are rare in awake auditory cortex.] Journal of Neurophysiology. 109(8):1989-95. (2013). | ||
* | *28. P. King, J. Zylberberg, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/2/29/King_Zylberberg_DeWeese_E_I_Net_Model_of_V1_JNeurosci_2013.pdf Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.] Journal of Neuroscience 33(13):5475–85 (2013). | ||
* | *27. J. Zylberberg, D. Pfau, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/e/ee/Zylberberg_Pfau_DeWeese_PRE_2012_reprint.pdf Dead leaves and the dirty ground: Low-level image statistics in transmissive and occlusive imaging environments.] Physical Review E. 86(6):066112 (2012). | ||
* | *26. P.R. Zulkowski, D.A. Sivak, G.E. Crooks, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/c/cb/Zulkowski_Sivak_Crooks_DeWeese_PRE_2012_reprint.pdf The geometry of thermodynamic control.] Physical Review E. 86(4):041148 (2012). | ||
* | *25. N. Carlson, V.L. Ming, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/4/4b/Carlson_Ming_DeWeese_Sparse_speech_ICC_PLoS_CB_2012_reprint.pdf Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus.] Public Library of Science Computational Biology. 7(10):e1002250 (2012). | ||
* | *24. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/f/fd/SohlDickstein_Battaglino_DeWeese_MinProbFlow_PRL_2011_reprint.pdf New method for parameter estimation in probabilistic models: Minimum probability flow.] Physical Review Letters. 107(22):220601 (2011). | ||
* | *23. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/e/eb/SohlDickstein_Battaglino_DeWeese_MPF_ICML_2011_with_SupMat.pdf Minimum Probability Flow Learning.] Proceedings of the 28th International Conference on Machine Learning (Bellevue, WA) (2011). | ||
* | *22. J. Zylberberg, J.T. Murphy, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/5/57/Zylberberg_DeWeese_SAILnet_PLoS_CB_2011_reprint.pdf A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields.] Public Library of Science Computational Biology. 7(10):e1002250 (2011). | ||
* | *21. J. Zylberberg, and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/7/7d/Zylberberg_DeWeese_prey_escape_Frontiers_2011_reprint.pdf How should prey animals respond to uncertain threats?] Frontiers in Computational Neuroscience 5:20. doi: 10.3389/fncom.2011.00020 (2011). | ||
* | *20. M.A. Olshausen and M.R. DeWeese. [http://redwood.berkeley.edu/w/images/0/00/Olshausen_DeWeese_Statistics_of_Style_Nature_2010.pdf Applied mathematics: The statistics of style.] Nature 463(7284), 1027-1028 (2010). | ||
*12. M.R. DeWeese and A.M. Zador. [ | *19. Y. Yang, M.R. DeWeese, G. Otazu, and A.M. Zador. [http://redwood.berkeley.edu/w/images/f/fb/Yang_DeWeese_Otazu_Zador_microstim_timing_NatNeuro_2008_epub.pdf Millisecond-scale differences in neural activity in auditory cortex can drive decisions.] Nature Neuroscience 11, 1262-1263 (2008). | ||
*18. T. Hromadka, M.R. DeWeese, and A.M. Zador. [http://redwood.berkeley.edu/w/images/5/5f/Hromadka_DeWeese_Zador_Sparse_Awake_cellat_PLoS_2008.pdf Sparse representation of sounds in the unanesthetized auditory cortex.] PLoS Biol. 6, 124-137 (2008). | |||
*17. M.R. DeWeese. [http://redwood.berkeley.edu/w/images/a/aa/DeWeese_CPNS_wholecell_invivo_methods_2007.pdf Whole-Cell Recording In Vivo.] Chapter 6 in Current Protocols in Neuroscience. John Wiley & Sons, Inc., pp. 6.22.1-15 (2007). | |||
*16. M.R. DeWeese and A.M. Zador. [http://redwood.berkeley.edu/w/images/f/f9/DeWeese_Zador_Bumps_reprint_JN_2006.pdf Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex.] J. Neuroscience 26(47), 12206-12218 (2006). | |||
*15. M.R. DeWeese and A.M. Zador. [http://redwood.berkeley.edu/w/images/3/38/DeWeese_Zador_Nature_N%26V_2006.pdf Neurobiology: Efficiency Measures.] Nature 439(7079), 920-921 (2006). | |||
*14. M.R. DeWeese, T. Hromádka, and A.M. Zador. [http://redwood.berkeley.edu/w/images/d/d6/Hromadka_DeWeese_Zador_Neuron_AC_Bandwidth_Neuron_2005.pdf Reliability and representational bandwidth in auditory cortex.] Neuron 48, 479-588 (2005). | |||
*13. M.R. DeWeese and A.M. Zador. [http://redwood.berkeley.edu/w/images/7/75/DeWeese_Zador_Neuron_Preview_2005.pdf Neural gallops across auditory streams.] Neuron 48, 5-7 (2005). | |||
*12. M.R. DeWeese and A.M. Zador. [http://redwood.berkeley.edu/w/images/5/5a/DeWeese_and_Zador_variability_JNeurophys_2004.pdf Shared and private variability in the auditory cortex.] J. Neurophysiol. 92, 1840-1855 (2004). | |||
*11. M.R. DeWeese and A.M. Zador. Binary coding in auditory cortex. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 15, 101 (2003). | *11. M.R. DeWeese and A.M. Zador. Binary coding in auditory cortex. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 15, 101 (2003). | ||
*10. M.R. DeWeese, M. Wehr, and A.M. Zador. [ | *10. M.R. DeWeese, M. Wehr, and A.M. Zador. [http://redwood.berkeley.edu/w/images/5/5d/DeWeese_Wehr_Zador_binary_spiking_A1_2003.pdf Binary spiking in auditory cortex.] J. Neurosci. 23, 7940-7949 (2003). | ||
*9. M.R. DeWeese. [ | *9. M.R. DeWeese. [http://redwood.berkeley.edu/w/images/0/0c/DeWeese_Optim_Prep_for_Studying_Opt_Neuron_2000.pdf An optimal preparation for studying optimization.] Neuron 26, 546-548 (2000). | ||
*8. M.R. DeWeese and M. Meister. [ | *8. M.R. DeWeese and M. Meister. [http://redwood.berkeley.edu/w/images/8/80/DeWeese_Meister_Info_per_observation_Network_1999.pdf How to measure the information gained from one symbol.] Network 10, 325-340 (1999). | ||
*7. G. Buracas, A.M. Zador, M.R. DeWeese, and T. Albright. [ | *7. G. Buracas, A.M. Zador, M.R. DeWeese, and T. Albright. [http://redwood.berkeley.edu/w/images/0/00/Buracas_Zador_DeWeese_Albright_Efficient_Discrimination_Neuron_1998.pdf Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex.] Neuron 20, 959-969 (1998). | ||
*6. M.R. DeWeese and A. Zador. [ | *6. M.R. DeWeese and A. Zador. [http://redwood.berkeley.edu/w/images/2/26/DeWeese_Zador_adaptation_to_variance_Neural_Computation_2003.pdf Asymmetric dynamics in optimal variance adaptation.] Neural Computation 10, 1179-1202 (1998). | ||
*5. M.R. DeWeese. Optimization principles for the neural code. Network 7, 325-331 (1996). | *5. M.R. DeWeese. Optimization principles for the neural code. Network 7, 325-331 (1996). | ||
*4. M. DeWeese. [ | *4. M. DeWeese. [http://redwood.berkeley.edu/w/images/1/14/DeWeese_NIPS_1996.pdf Optimization principles for the neural code.] In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 8, p. 281 (1996). | ||
*3. W. Bialek and M. DeWeese. [ | *3. W. Bialek and M. DeWeese. [http://redwood.berkeley.edu/w/images/5/5a/Bialek_DeWeese_Random_Switching_Optimal_PRL_1995.pdf Random switching and optimal processing in the perception of ambiguous signals.] Phys. Rev. Lett. 74, 3077-3080 (1995). | ||
*2. M. DeWeese and W. Bialek. [ | *2. M. DeWeese and W. Bialek. [http://redwood.berkeley.edu/w/images/8/87/DeWeese_Bialek_Info_Flow_in_Sensory_Neurons_Il_Nuovo_Cimento_1995.pdf Information flow in sensory neurons.] Il Nuovo Cimento A17, 733 (1995). | ||
*1. W. Bialek, M. DeWeese, F. Rieke, and D. Warland. [ | *1. W. Bialek, M. DeWeese, F. Rieke, and D. Warland. [http://redwood.berkeley.edu/w/images/3/32/Bialek_et_al_Bits_and_Brains_1993.PDF Bits and brains: information flow in the nervous system.] Physica A 200, 581-593 (1993). |
Latest revision as of 09:22, 4 March 2020
Here is my short CV and below is my publication list. Most papers are available here as PDFs.
Publications:
- 49. P.S. Sachdeva, J.A. Livezey, M.R. DeWeese. Heterogeneous synaptic weighting improves neural coding in the presence of common noise. Neural Computation, in press. (2020).
- 48. M.Y.S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, M.R. DeWeese. Design of optical neural networks with component imprecisions. Optics express 27, 14009-14029. (2019).
- 47. M.N. Insanally, I. Carcea, R.E. Field, C.C. Rodgers, B. DePasquale, K. Rajan, M.R. DeWeese, B.F. Albanna, R.C. Froemke. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife 8, e42409. (2019).
- 46. E.M.V. Dodds, M.R. DeWeese. On the sparse structure of natural sounds and natural images: similarities, differences, and implications for neural coding. Frontiers in computational neuroscience 13, 39. (2019).
- 45. L. Kang, M.R. DeWeese. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife 8, e46351. (2019).
- 44. D. Mandal, K. Klymko, and M.R. DeWeese. Reply to Comment on ``Entropy Production and Fluctuation Theorems for Active Matter". Physical review letters 121, 139802. (2018).
- 43. D. Mandal, K. Klymko, and M.R. DeWeese. Entropy Production and Fluctuation Theorems for Active Matter. Physical Review Letters 119, 258001. (2017).
- 42. B. Albanna, C. Hillar, J. Sohl-Dickstein and M.R. DeWeese. Minimum and Maximum Entropy Distributions for Binary Systems with Known Means and Pairwise Correlations. Entropy 19, 427 (2017).
- 41. G. Dunn, K. Shen, J.N. Belling, T.N.H. Nguyen, E. Barkovich, K. Chism, M.M. Maharbiz, M.R. DeWeese and A. Zettl. Selective Insulation of Carbon Nanotubes. Physica Status Solidi B. 00, 1700202 (2017).
- 40. D. Mandal and M.R. DeWeese. Nonequilibrium work energy relation for non-Hamiltonian dynamics. Physical Review E. 93(4):042129. (2016).
- 39. P.R. Zulkowski and M.R. DeWeese. Optimal control of overdamped systems. Physical Review E. 92(3):032117. (2015).
- 38. P.R. Zulkowski and M.R. DeWeese. Optimal protocols for slowly driven quantum systems. Physical Review E. 92(3):032113. (2015).
- 37. S.E. Marzen, M.R. DeWeese, and J.P. Crutchfield, Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality. Frontiers in Computational Neuroscience. 9:105. (2015).
- 36. V.M. Carels and M.R. DeWeese. Rats Exert Executive Control. Neuron 86, pp. 1324-1326 (2015).
- 35. J. Sohl-Dickstein, S. Teng, B. Gaub, C. Rodgers, C. Li, M. DeWeese, and N. Harper. A device for human ultrasonic echolocation. IEEE Transactions in Biomedical Engineering. 62(6):1526-1534 (2015).
- 34. P.R. Zulkowski and M.R. DeWeese. Optimal finite-time erasure of a classical bit. Physical Review E. 89(5):052140 (2014).
- 33. C.C. Rodgers and M.R. DeWeese. Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents. Neuron, 82(5), p1157–1170. (2014). (Neuron Preview of this paper by Odoemene and Churchland)
- 32. J. Sohl-Dickstein, M. Mudigonda, and M.R. DeWeese. Hamiltonian Monte Carlo Without Detailed Balance. Proceedings of the 31st International Conference on Machine Learning (Beijing) (2014).
- 31. P.R. Zulkowski, D.A. Sivak, and M.R. DeWeese. Optimal control of transitions between nonequilibrium steady states. Public Library of Science ONE. 8(12):e82754 (2013).
- 30. J. Zylberberg and M.R. DeWeese. Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images. Public Library of Science Computational Biology. 9(8):e1003182 (2013).
- 29. T. Hromádka, A.M. Zador, and M.R. DeWeese. Up-states are rare in awake auditory cortex. Journal of Neurophysiology. 109(8):1989-95. (2013).
- 28. P. King, J. Zylberberg, and M.R. DeWeese. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. Journal of Neuroscience 33(13):5475–85 (2013).
- 27. J. Zylberberg, D. Pfau, and M.R. DeWeese. Dead leaves and the dirty ground: Low-level image statistics in transmissive and occlusive imaging environments. Physical Review E. 86(6):066112 (2012).
- 26. P.R. Zulkowski, D.A. Sivak, G.E. Crooks, and M.R. DeWeese. The geometry of thermodynamic control. Physical Review E. 86(4):041148 (2012).
- 25. N. Carlson, V.L. Ming, and M.R. DeWeese. Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus. Public Library of Science Computational Biology. 7(10):e1002250 (2012).
- 24. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. New method for parameter estimation in probabilistic models: Minimum probability flow. Physical Review Letters. 107(22):220601 (2011).
- 23. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. Minimum Probability Flow Learning. Proceedings of the 28th International Conference on Machine Learning (Bellevue, WA) (2011).
- 22. J. Zylberberg, J.T. Murphy, and M.R. DeWeese. A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields. Public Library of Science Computational Biology. 7(10):e1002250 (2011).
- 21. J. Zylberberg, and M.R. DeWeese. How should prey animals respond to uncertain threats? Frontiers in Computational Neuroscience 5:20. doi: 10.3389/fncom.2011.00020 (2011).
- 20. M.A. Olshausen and M.R. DeWeese. Applied mathematics: The statistics of style. Nature 463(7284), 1027-1028 (2010).
- 19. Y. Yang, M.R. DeWeese, G. Otazu, and A.M. Zador. Millisecond-scale differences in neural activity in auditory cortex can drive decisions. Nature Neuroscience 11, 1262-1263 (2008).
- 18. T. Hromadka, M.R. DeWeese, and A.M. Zador. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, 124-137 (2008).
- 17. M.R. DeWeese. Whole-Cell Recording In Vivo. Chapter 6 in Current Protocols in Neuroscience. John Wiley & Sons, Inc., pp. 6.22.1-15 (2007).
- 16. M.R. DeWeese and A.M. Zador. Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J. Neuroscience 26(47), 12206-12218 (2006).
- 15. M.R. DeWeese and A.M. Zador. Neurobiology: Efficiency Measures. Nature 439(7079), 920-921 (2006).
- 14. M.R. DeWeese, T. Hromádka, and A.M. Zador. Reliability and representational bandwidth in auditory cortex. Neuron 48, 479-588 (2005).
- 13. M.R. DeWeese and A.M. Zador. Neural gallops across auditory streams. Neuron 48, 5-7 (2005).
- 12. M.R. DeWeese and A.M. Zador. Shared and private variability in the auditory cortex. J. Neurophysiol. 92, 1840-1855 (2004).
- 11. M.R. DeWeese and A.M. Zador. Binary coding in auditory cortex. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 15, 101 (2003).
- 10. M.R. DeWeese, M. Wehr, and A.M. Zador. Binary spiking in auditory cortex. J. Neurosci. 23, 7940-7949 (2003).
- 9. M.R. DeWeese. An optimal preparation for studying optimization. Neuron 26, 546-548 (2000).
- 8. M.R. DeWeese and M. Meister. How to measure the information gained from one symbol. Network 10, 325-340 (1999).
- 7. G. Buracas, A.M. Zador, M.R. DeWeese, and T. Albright. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959-969 (1998).
- 6. M.R. DeWeese and A. Zador. Asymmetric dynamics in optimal variance adaptation. Neural Computation 10, 1179-1202 (1998).
- 5. M.R. DeWeese. Optimization principles for the neural code. Network 7, 325-331 (1996).
- 4. M. DeWeese. Optimization principles for the neural code. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 8, p. 281 (1996).
- 3. W. Bialek and M. DeWeese. Random switching and optimal processing in the perception of ambiguous signals. Phys. Rev. Lett. 74, 3077-3080 (1995).
- 2. M. DeWeese and W. Bialek. Information flow in sensory neurons. Il Nuovo Cimento A17, 733 (1995).
- 1. W. Bialek, M. DeWeese, F. Rieke, and D. Warland. Bits and brains: information flow in the nervous system. Physica A 200, 581-593 (1993).