Michael DeWeese: Difference between revisions

From RedwoodCenter
Jump to navigationJump to search
No edit summary
No edit summary
Line 63: Line 63:
*10.  M.R. DeWeese, M. Wehr, and A.M. Zador.  [https://redwood.berkeley.edu/w/images/5/5d/DeWeese_Wehr_Zador_binary_spiking_A1_2003.pdf Binary spiking in auditory cortex.]  J. Neurosci. 23, 7940-7949 (2003).
*10.  M.R. DeWeese, M. Wehr, and A.M. Zador.  [https://redwood.berkeley.edu/w/images/5/5d/DeWeese_Wehr_Zador_binary_spiking_A1_2003.pdf Binary spiking in auditory cortex.]  J. Neurosci. 23, 7940-7949 (2003).


*9.    M.R. DeWeese.  An optimal preparation for studying optimization.  Neuron 26, 546-548 (2000).
*9.    M.R. DeWeese.  [http://redwood.berkeley.edu/w/images/0/0c/DeWeese_Optim_Prep_for_Studying_Opt_Neuron_2000.pdf An optimal preparation for studying optimization.] Neuron 26, 546-548 (2000).


*8.    M.R. DeWeese and M. Meister.  [http://redwood.berkeley.edu/w/images/8/80/DeWeese_Meister_Info_per_observation_Network_1999.pdf How to measure the information gained from one symbol.]  Network 10, 325-340 (1999).
*8.    M.R. DeWeese and M. Meister.  [http://redwood.berkeley.edu/w/images/8/80/DeWeese_Meister_Info_per_observation_Network_1999.pdf How to measure the information gained from one symbol.]  Network 10, 325-340 (1999).
Line 77: Line 77:
*3.    W. Bialek and M. DeWeese.  [https://redwood.berkeley.edu/w/images/5/5a/Bialek_DeWeese_Random_Switching_Optimal_PRL_1995.pdf Random switching and optimal processing in the perception of ambiguous signals.]  Phys. Rev. Lett. 74, 3077-3080 (1995).
*3.    W. Bialek and M. DeWeese.  [https://redwood.berkeley.edu/w/images/5/5a/Bialek_DeWeese_Random_Switching_Optimal_PRL_1995.pdf Random switching and optimal processing in the perception of ambiguous signals.]  Phys. Rev. Lett. 74, 3077-3080 (1995).


*2.    M. DeWeese and W. Bialek.  Information flow in sensory neurons.  [https://redwood.berkeley.edu/w/images/8/87/DeWeese_Bialek_Info_Flow_in_Sensory_Neurons_Il_Nuovo_Cimento_1995.pdf Il Nuovo Cimento.] A17, 733 (1995).
*2.    M. DeWeese and W. Bialek.  [https://redwood.berkeley.edu/w/images/8/87/DeWeese_Bialek_Info_Flow_in_Sensory_Neurons_Il_Nuovo_Cimento_1995.pdf Information flow in sensory neurons.] Il Nuovo Cimento A17, 733 (1995).


*1.    W. Bialek, M. DeWeese, F. Rieke, and D. Warland.  [https://redwood.berkeley.edu/w/images/3/32/Bialek_et_al_Bits_and_Brains_1993.PDF Bits and brains:  information flow in the nervous system.]  Physica A 200, 581-593 (1993).
*1.    W. Bialek, M. DeWeese, F. Rieke, and D. Warland.  [https://redwood.berkeley.edu/w/images/3/32/Bialek_et_al_Bits_and_Brains_1993.PDF Bits and brains:  information flow in the nervous system.]  Physica A 200, 581-593 (1993).

Revision as of 07:35, 12 January 2013

Here is my short CV and below is my publication list including some preprints. Most papers are available here as PDFs.

Selected manuscripts in preparation:

  • ix. M. Mudigonda, J. Sohl-Dickstein, and M.R. DeWeese. Faster sampling from probabilistic models by reduced flipping in Hamiltonian Markov chain Monte Carlo sampling. (in preparation)
  • viii. N. Carlson, V.L. Ming, and M.R. DeWeese. Probe stimuli affect receptive field estimation of model auditory neurons optimized to represent speech efficiently. (in preparation)
  • vii. S. Marzen, J. Zylberberg, and M.R. DeWeese. The effect of natural scene statistics and oculomotor strategy on binocular disparity and ocular dominance maps. (in preparation)
  • vi. S. Corinaldi and M.R. DeWeese. A network model of task switching optimized to minimize errors predicts several counterintuitive features of human behavioral data. (in preparation).
  • v. C. Rodgers, M. Dastjerdi, and M.R. DeWeese. Task-dependent anticipatory activity in both prefrontal cortex and auditory cortex during a purely auditory selective attention task. (in preparation).

Submitted manuscripts:

  • iv. T. Hromádka, A.M. Zador, and M.R. DeWeese. Up-states are rare in awake auditory cortex. (submitted).

All publications:

  • 28. P. King, J. Zylberberg, and M.R. DeWeese. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. Journal of Neuroscience (in press).
  • 23. J. Sohl-Dickstein, P. Battaglino, and M.R. DeWeese. Minimum Probability Flow Learning. Proceedings of the 28th International Conference on Machine Learning (Bellevue, WA) (2011).
  • 11. M.R. DeWeese and A.M. Zador. Binary coding in auditory cortex. In Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, Vol. 15, 101 (2003).
  • 5. M.R. DeWeese. Optimization principles for the neural code. Network 7, 325-331 (1996).